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H I G H L I G H T S

� We used semi-classical transport equations to study THz generation and amplification schemes in monolayer graphene nanoribbons.
� We have studied THz properties of graphene subject to multi-frequency electric fields.
� THz radiations are generated due to amplifications of Bloch oscillation frequencies.
� Amplification in graphene is possible when AC field suppresses electric field domains created by DC field.
� Graphene devices operating at high frequencies in the THz range can be very attractive.
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a b s t r a c t

We study theoretically a multi-frequency response of electrons in confined graphene subject to DC–AC
driven fields. We explore the possibility for using graphene nanoribbons (GNRs) to generate and amplify
terahertz (THz) radiations in electric field domainless regime. We discover two main important schemes
of generation; when the frequencies are commensurate, THz generation is due to wave mixing and when
they are non-commensurate, a single strong field suppresses space charge instability and any weak
signals can get amplified.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graphene is a monolayer of one atom thick with fascinating
carrier transport properties. Especially, its high carrier mobility of
44,000 cm2 V�1 s�1 [1] has attracted a great deal of interests.
Attempts to utilize these unique properties in graphene devices
are posing some difficulties. The limitation is probably due to
several factors including; lack of band gap in graphene sheets,
edge defects, disorder, among others. To overcome some of these
obstacles, the dimension of graphene sheets can be reduced or the
geometry altered. After all, new physics (quantization) emerge
when dimensions of materials are reduced. An infinite 2D gra-
phene could become 1Dþquantization along one other direction
opening a gap. The resulting material is known as graphene
nanoribbon (GNR). Depending on the nature of the edges, one

can get two symmetry groups from this GNR; armchair graphene
nanoribbon (aGNR) or zigzag graphene nanoribbon (zGNR). Elec-
tron dynamics of both aGNR and zGNR have different properties,
mostly due to the berry phase and pseudospin [2]. Edge states
have significant contribution to graphene properties, because in a
nanometer size ribbon, massless Dirac fermions can reach the
edges within a femto-second before encountering any other lattice
effects, like electron–electron interaction, electron–phonon inter-
action, etc.

In this paper, we study the phenomenon of generation of
frequencies in the terahertz (THz) range. The development of
sources and sensors emitting and detecting electromagnetic waves
in the terahertz regime has been the subject of interest for some
time now. And holds great promise for graphene based THz
metamaterials, optoelectronic devices, THz lasers, fast switching
mechanisms, spectroscopy, wireless communication [3]. Recently,
THz generations were studied in graphene using resonance
tunneling-like configuration [4] by tunable plasmon excitations,
light-plasmon coupling [5] or by optical pumping of graphene
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[6–8]. Bloch oscillations up to 10 THz can be generated in periodic
graphene structures [9]. Today, semiconductor superlattices are
used as sources for THz radiation and detection. However, GNRs
are better candidates because of their low dimensionality, striking
electronic properties and the possibility of controlling these
properties via applied gate voltage. Graphene is also relatively
easy to fabricate in laboratory.

The physical mechanism governing THz generation in graphene,
when subject to applied electric field, can be understood in terms of
ballistic trajectories of electrons in the quasi-momentum space.
When graphene is subject to an electric field, ballistic acceleration
of charge carriers generates to-and-fro motion of the whole
distribution function, which varies from zero to several electron
volts. It is a collective motion of these charges that manifest THz
oscillation of carriers in graphene. The high nonlinearity (non-
parabolicity) energy spectrum can also account for THz production
in the material. This can be responsible for mismatch between
photo electron relaxation and electron–hole recombination rates.
The latter effect is more applicable provided frequencies are
commensurate. When two or more commensurate frequencies
interfere in a region they could result in creation of fields with
zero frequencies (static fields). These bias fields are predicted to be
responsible for Bloch oscillations at THz frequencies [10].

The remaining of this paper is organized as follows; in Section 2,
we introduced the model and theory of the problem. We obtained
current density for aGNR and zGNR. By imposing model boundary
conditions to reduce the equations to simple forms appropriate for
our systems under discussion. Limiting the harmonics fields to only
two terms, we deduce I–V characteristic equations for describing
THz generations in Section 3. The results obtained in the preceding
section are analyzed and discussed in Section 4, with conclusions
and some recommendations for future work in Section 5.

2. The model and theory

We consider an undoped GNRs (zigzag and armchair) exposed
simultaneously to DCþAC electric fields

EðtÞ ¼ EDCþ ∑
n

j ¼ 1
Ej cos ðωjtþαjÞ: ð1Þ

This is seen as a superposition of n harmonic waves polarized
along one direction with angular frequencies, ωi and biased by
static field, EDC . The phase difference between the ðjþ1Þth and jth
component being αjþ1�αj ¼ α is arbitrary, j is an integer. Ej are AC
field amplitudes. The dynamics of free π�electrons in graphene
can be describe by the time-dependent Boltzmann transport
equation (BTE) based on relaxation time approximation in zero
magnetic field as

∂f ðk; tÞ
∂t

þeEðtÞ
ℏ

∂f ðk; tÞ
∂k

¼ Γ½f ðk; tÞ� f 0ðkÞ�; ð2Þ

where f 0ðkÞ and f ðt; kÞ are the equilibrium and non-equilibrium
Fermi electron distribution functions, respectively. e is the electro-
nic charge, k is the electron wave vector and ℏ is the reduced plank
constant. Γ is the reciprocal of the relaxation time, τ:

2.1. Armchair and zigzag nanoribbon band structures

The energy band structure of aGNR and zGNR is characterized
by three parameters: band index λ; phase θ and wave vector k
[2,11]. For aGNR

ελðk; θÞ ¼ λγ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4 cos 2ðsΔθÞþ4 cos ðsΔθÞ cos ðklÞ

q
ð3Þ

and for zGNR

ελðk; θÞ ¼ λγ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4 cos 2ðkl0Þþ4 cos ðsΔθÞ cos ðkl0Þ

q
; ð4Þ

λ¼ 71; (þ) for conduction band and (�) for valence band.
l¼

ffiffiffi
3

p
a=2, and l0 ¼ a=2. a is the carbon–carbon distance which has

numerical value of 1.42 Å, γ0 � 3:0 eV is the overlap integral and θ
is the phase perpendicular to the quasi-momentum ℏk. The 1BZ of
aGNR is bounded by kl¼ ½�π=2; π=2� and the zGNR is kl0 ¼ ½0; π�. k
is parallel to the edge and has translational symmetry along this
direction. For aGNR, the transverse wave vector (phase) is quan-
tized according to the rule [2] θs ¼ sΔθ with Δθ¼ π=ðℵþ1Þ and
s¼ 1;2;…;ℵ. Unlike aGNR, the nature of transverse wave vector
quantization is complicated in zGNR, depending on both $k$ and θ
as Δθs ¼ ðπjþΛ½k; θ�Þ=ðℵþ1Þ. However, for simplicity we assume Λ
is constant, say π=2; so that Δθs ¼ ðjþ1=2Þπ=ðℵþ1Þ. Except this
little subtlety for zGNRs, all that will be discussed in the following
for aGNR are equally applied to the zGNR.

Utilizing the translational invariance of the graphene ribbon in
the reciprocal space, one can expand in Fourier series functions f ,
f 0, and ε along the edge having the periodicity in k. i.e.

f 0ðk; θÞ ¼ ∑
ra0

f rðθÞeirkl; f ðk; θ; tÞ

¼ ∑
ra0

f rðθÞeirklΦrðtÞ and εðk; θÞ ¼ ∑
ra0

εrðθÞeirkl ð5Þ

The Fourier coefficients f r and εr are expressed as f rðθÞ ¼
∑ϰ

s ¼ 1f rsΔθδðθs�sΔθÞ with f rs ¼ ðl=πsΔθÞ R π=2l
�π=2l dkf 0ðk; θÞe� irkl and

εr ¼ ðl=2πγ0Þ
R π=2l
�π=2l

R
dk εðkÞe� irkl, f rs ¼ f n� rs and εr ¼ εn� r : Subscript

s in Eq. (5) counts the number of dimmers ϰ in GNRs. The factor Φr

in Eq. (6) is a central point in this paper and so has to be
determined. r is an integer and not equal to zero. To compute
ΦðtÞ, Eq. (5) is substituted in Eq. (2) following the simplification
scheme j; j0 ¼ 1;2;3;… and mj; nj ¼ 71; 72; 73;…. We obtained

ΦrðtÞ ¼ ∑
1

nj ;νj ¼ �1
∏
n

j ¼ 1
Jnj ðrβjÞJnj �νj

ðrβjÞ
eiνjωj tþ þ iνjαj

1þ iτðrωDCþνjωjÞ
þc:c ð6Þ

where νj ¼ nj�mj, βj ¼ elτEj=ℏω and ωDC ¼ elEDC=ℏ.

2.2. Sheet current density equation

The sheet current density of graphene can be determined from
the relation

jðtÞ ¼ gsgv
4π2

∑
ϰ

s ¼ 1

Z
dk vðk; θsÞf ðk; θs;ΦrÞ; ð7Þ

where gs and gv are the spin and valley degeneracies respectively.
The velocity of Dirac fermions in graphene is defined as
vðkÞ ¼ ∂ε=ℏ∂k. In terms of the Fourier coefficients

vðk; θÞ ¼ iγ0l
ℏ

∑
ra0

rεrseirkl ð8Þ

giving

jðtÞ ¼ i ∑
1

r ¼ 1
jDC;r ;ΦrðtÞþc:c; ð9Þ

or

jðtÞ ¼ i ∑
1

r ¼ 1
jDC;r ∑

1

nj ;νj ¼ �1
∏
n

j ¼ 1
Jnj
ðrβjÞJnj �νj

ðrβjÞ
eiνjωj tþ þ iνjαj

1þ iτðrωDCþνjωjÞ

" #

ð10Þ
where the DC current density is

jDC;r ¼
2gsgveγ0

πlℏ
Δθ ∑

ϰ

s ¼ 1
rεrsf rs; with jn0;r ¼ � j0;� r

and gs and gv are the spin and valley degeneracies, respectively.

R. Musah et al. / Physica E 61 (2014) 90–94 91



Download English Version:

https://daneshyari.com/en/article/1544401

Download Persian Version:

https://daneshyari.com/article/1544401

Daneshyari.com

https://daneshyari.com/en/article/1544401
https://daneshyari.com/article/1544401
https://daneshyari.com

