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H I G H L I G H T S

� Resonant-peak positions do not depend on the number of barriers at certain conditions.
� Gapped fractions cause decrease (increase) of the conductance (Fano factor).
� Gapped-graphene regions affect the Fano factor stronger than the conductivity.
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a b s t r a c t

We study transport properties of graphene nanostructures consisted of alternating slabs of gapless
ðΔ¼ 0Þ and gapped ðΔa0Þ graphene in the presence of piecewise constant external potential equal to
zero in the gapless regions. The transmission through single-, double-barrier structures and superlattices
has been studied. It was revealed that any n-barrier structure is perfectly transparent at certain
conditions defining the positions of new Dirac points created in the superlattice. The conductance and
the shot noise were as well computed and investigated for the considered graphene systems. In a general
case, the existence of gapped graphene fraction leads to a decrease of the conductance and an increase of
the Fano factor. For two barriers formed by gapped graphene and separated by a long and highly doped
region the Fano factor rises up to 0.5 in contrast to a similar gapless structure where the Fano factor is
close to 0.25. Similar to a gapless graphene superlattice, creation of each new Dirac point manifests itself
as a conductivity resonance and a narrow dip in the Fano factor. However, gapped graphene inclusion
into the potential-barrier regions in the superlattice leads to more complicated dependence of the Fano
factor on the potential height compared to pseudo-diffusive behavior (with F¼1/3) typical for a gapless
superlattice.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Transport properties of graphene and graphene-based micro-
structures are currently among the most actively investigated
topics in graphene physics [1–11]. Aside from fundamental aspects
such interest in graphene stems from its potential applications as a
high-mobility semiconductor and the experimental ability to tune
its properties via gating [2]. Investigation of the electron transport
includes the consideration of a conductance and shot noise which
is characterized by the Fano factor F being the ratio of the noise
power and mean current. For instance, the Fano factor of wide and
short graphene sheet equals 1/3 [6] near the Dirac point. This
coincides with the well-known result for diffusive wire [12].

Lots of theoretical and experimental works have been devoted
to investigations of transmission T and conductance G through
different multibarrier graphene nanostructures and graphene
superlattices (SLs) [13–23] which can be fabricated, e.g., by
applying a local top gate voltage. It has been shown that a one-
dimensional periodic potential substantially affects the transport
properties of graphene. For instance, the Kronig–Penney type
electrostatic potential produces strong anisotropy in the carrier
group velocity near the Dirac point leading to the supercollimation
phenomenon [24–26].

The band structure of an ideal graphene sheet has no energy
gap which results, for example, in total transparency of any
potential barrier for normally incident electrons [27] (an analog
of the Klein paradox [28]). It is extremely desirable for electronics
applications that graphene structures be gapped. Therefore, much
effort of researchers has been focused on producing a gap in the
graphene spectrum. The gap can be created by strain engineering
as well as by deposition or adsorption of molecules on a graphene
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layer. For instance, a hydrogenated sheet of graphene (graphane) is
a semiconductor with a gap of the order of a few eV [29]. Other
way of producing the gap is to use a hexagonal boron nitride (hBN)
substrate. In this case the gap value is small enough owing to the
lattice mismatch. However, it can be increased by applying a
perpendicular electric field [30].

Creation of various graphene heterostructures, including SLs,
with the gap discontinuity is widely discussed now. One way of
generating spatially modulated gap is graphene on a substrate
made from different dielectrics [31]. The required gap modulation
can also be created by using, e.g., an inhomogeneously hydro-
genated graphene or graphene sheet with nonuniformly deposited
CrO3 molecules. In our previous work [32] we studied the
electronic properties of graphene SL in which the gap and
potential profile are piecewise constant functions. It was found
that in such a SL up to some critical value Vc of potential allowed
subbands are separated by gaps. When the potential value is
greater than or equal to Vc the contact or cone-like Dirac points
appear in the spectrum. As a result, SL becomes gapless.

In this work we examine in detail ballistic transport through
graphene nanostructures, including SL, formed by space-
modulated gap and potential. Using the transfer-matrix formalism
we study the transmission, conductance and the Fano factor for
systems with an arbitrary numbers of barriers.

2. Basic equations

Let us initially consider a lateral one-dimensional multibarrier
structure consisting of N strips with widths dj ðj¼ 1;…;NÞ char-
acterized by the gaps Δj and potential heights Vj (see Fig. 1). The
outer regions labeled by 0 and Nþ1 correspond to the gapless
graphene with Δ¼ V ¼ 0. In jth strip, the carriers are described by
the two-dimensional Dirac equation

ðℏυFrkþΔjszÞΨ j ¼ ðE�VjÞΨ j; ð1Þ
where ℏk is the momentum operator, r is the vector of Pauli
matrices, and υF � 106 m=s is the Fermi velocity. Due to translation

invariance in the y-direction, the solution of Eq. (1) in the jth
region can be written as Ψ jðx; yÞ ¼Ψ jðxÞ expðikyyÞ. It is convenient
to define the wavevector kj as

kj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�VjÞ2�Δ2

j

q
ℏυF

: ð2Þ

Then for k2j 4k2y the wavefunction Ψ jðxÞ in strip j ðxLj rxrxRj Þ is a
superposition of plane waves

Ψ jðxÞ ¼
Ajffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2j þ1

q 1
sjδjeiθj

 !
expðikjx cos θjÞ

þ Bjffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2j þ1

q 1
�sjδje� iθj

 !
expð� ikjx cos θjÞ: ð3Þ

Here, θj ¼ tan �1ðky=kxjÞ, kxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�VjÞ2�Δ2

j �ðℏυFkyÞ2
q

=ℏυF ,

θjA ½�π=2;π=2�, δj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�Vj�ΔjÞ=ðE�VjþΔjÞ

q
, sj ¼ sgnðE�VjþΔjÞ.

xj
L and xj

R denote the left and right boundaries of the strip j,

respectively, so that xRj�1 ¼ xLj . In the opposite case, when k2j ok2y ,

solution Ψ jðxÞ has pure exponential behavior along the x-axis.
Suppose that Ψ jðxÞ oscillates everywhere. Then we define the

functions AjðxÞ ¼ Aj expðikjx cos θjÞ, BjðxÞ ¼ Bj expð� ikjx cos θjÞ.
As a result, Eq. (3) may be written in the form

Ψ jðxÞ ¼ Lj
AjðxÞ
BjðxÞ

 !
; ð4Þ

where

Lj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2j þ1

q 1 1
sjδjeiθj �sjδje� iθj

 !
: ð5Þ

Continuity of the upper and lower components Ψ jðxÞ at the strip
boundaries requires that
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Within the region j the solutions ðAL
j , B

L
j Þ and ðAR

j , B
R
j Þ are connected

by the free propagation matrix Kj:
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where

Kj ¼
eikjdj cos θj 0

0 e� ikjdj cos θj

 !
: ð8Þ

Combining Eqs. (7) and (8) one can find
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0

 !
; ð9Þ

where the transfer matrix M is introduced for the considered
heterostructure as

M¼ L�1
Nþ1FNFN�1…F1L0: ð10Þ

Here LNþ1 ¼ L0 is determined by Eq. (5) at V ¼Δ¼ 0 and
Fj ¼ LjKjL

�1
j , which yields

Fj ¼
1

cos θj

cos ðkjdj cos θj�θjÞ
isj

δj
sin ðkjdj cos θjÞ

isjδj sin ðkjdj cos θjÞ cos ðkjdj cos θjþθjÞ

0
B@

1
CA: ð11Þ

We may use Eq. (11) for an arbitrary multibarrier structure,
characterized by different parameters Δj and Vj in each slab of
width dj.

Fig. 1. (a) Model of graphene structure represented by series slabs of width
dj ðj¼ 1;…;NÞ characterized by gaps Δj and potential Vj. (b) Schematic diagram of
a Kronig–Penney type multibarrier structure, in which the gap and potential equal
to Δ and V, respectively, in the gray regions and zero outside.
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