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a b s t r a c t

Based on a semiclassical Boltzmann transport equation in random phase approximation, we develop a
theoretical model to understand low-field carrier transport in biased bilayer graphene, which takes into
account the charged impurity scattering, acoustic phonon scattering, and surface polar phonon
scattering as three main scattering mechanisms. The surface polar optical phonon scattering of carriers
in supported bilayer graphene is thoroughly studied using the Rode iteration method. By considering the
metal–BLG contact resistance as the only one free fitting parameter, we find that the carrier density
dependence of the calculated total conductivity agrees well with that observed in experiment under
different temperatures. The conductivity results also suggest that in high carrier density range, the
metal–BLG contact resistance can be a significant factor in determining the BLG conductivity at low
temperature, and both acoustic phonon scattering and surface polar phonon scattering play important
roles at higher temperature, especially for BLG samples with a low doping concentration, which can
compete with charged impurity scattering.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Bilayer graphene (BLG) has attracted tremendous attention in
the last few years due to its tunable band gap [1–4]. Currently, one
of the central issues in BLG research is to develop strategies for
improving carrier mobility, therefore it is crucial to understand the
distinct scattering mechanisms in biased bilayer graphene from a
scientific point of view and for achieving practical applications.

Different experiments and theories in the low-field regime have
revealed that carrier transport in graphene can be significantly
influenced by many factors including Coulomb scattering [5,6],
short-range (defect) scattering [7], in-plane acoustic phonon scat-
tering [8], substrate surface polar phonon scattering [9–11], and
contact resistance [12,13]. However, the origin of short-range
scattering in exfoliated graphene supported on SiO2 remains
controversial. Similar to monolayer graphene, Coulomb scattering
and short-range scattering in doped and biased BLG supported on
SiO2 are commonly considered as the dominant scattering mechan-
isms to explain the experimental data observed by different groups
[14,15], but much less is known about the effect of distinct phonon
scattering on low-field carrier conductivity. Moreover, recent
experimental studies have revealed that the measured conductivity

of relatively high doped BLG [16] or dual-gated BLG [17] shows an
anomalous increase with decreasing temperature in all carrier
density regime, which is different from that observed in previous
study [14]. On the other hand, the metal–BLG Schottky barrier
height considered to estimate the on/off ratio in gapped BLG [18],
which leads to the contact resistance, also increases as the
temperature decreases, suggesting that the contact resistance
should have a significant contribution in determining the BLG
conductivity. Despite the extensive research efforts already made,
a comprehensive understanding of low-field carrier transport
properties in biased BLG is still lacking and theoretical study on
this issue is in urgent need.

In this work, we have developed a detailed microscopic trans-
port theory for doped and biased BLG at finite temperature by
taking into account the charged impurity scattering, acoustic
phonon scattering, and surface polar phonon scattering as three
main scattering mechanisms. In addition, both voltage gate and
charged impurity induced perpendicular electric field and the
metal–BLG contact resistance have been included in the conduc-
tivity model.

2. Theoretical model

We consider a doped and biased Bernal-stacking BLG transistor
supported on the SiO2 substrate, as depicted in Fig. 1. The effective
low-energy two-band Hamiltonian can be well approximated
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around the K point of the Brillouin zone [19]

H¼
U ℏ2ðk̂xþ ik̂yÞ2=2mn

ℏ2ðk̂x� ik̂yÞ2=2mn �U

0
@

1
A ð1Þ

where k̂ ¼ ðk̂x; k̂yÞ is a wave vector operator, the effective mass
mn ¼ γ=ð2υ2F Þ, with γ¼0.39 eV, and U is the interlayer asymmetry
tunable by the perpendicular electric field. The wave functions of
Eq. (1) can be written as

Ψ skðrÞ ¼
1
L
Fsk expðik � rÞ ð2Þ

with

Fsk ¼

cos ðαk=2Þ
� sin ðαk=2Þ expð2iθkÞ

 !
if s¼ 1;

sin ðαk=2Þ
cos ðαk=2Þ expð2iθkÞ

 !
if s¼ �1;

8>>>>><
>>>>>:

ð3Þ

where L2 is the area of the system, θk ¼ arctanðky=kxÞ is the polar
angle of the wave vector k, tan αk ¼ ℏ2k2=ð2mnUÞ and s¼ 71
corresponds to the conduction and valence band, respectively. The

corresponding energy dispersion εs;k ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏ2k2=ð2mnÞÞ2þU2

q
, its

finite band gap is 2jUj, and density of state (DOS) per unit energy is

DðεÞ ¼mng=ð4πℏ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2�U2

p
Þ, where g ¼ gsgv is the total degeneracy

(gs ¼ 2, gv ¼ 2 being the spin and valley degeneracy).
To illustrate the disorder-induced spatial charge inhomogeneity

of BLG, we assume that the puddle surface potential V ranging
from �Δ to Δ can be described approximately by an uniform
distribution function, and an equivalent equilibrium distribution
function can be obtained by

f 0ðεÞ ¼
1
2Δ

Z Δ

�Δ

1
exp½βðε�μ�VÞ�þ1

dV

¼ 1
2βΔ

ln
1þexp½βðΔ�εþμÞ�
1þexp½�βðΔþε�μÞ�

� �
ð4Þ

where μ is the average Fermi level, and β¼ 1=kT . Note that when
Δ¼ 0, f 0ðεÞ in Eq. (4) reduces to Fermi distribution function
f 0ðεÞ ¼ f1þexp½βðε�μÞ�g�1.

According to the Gauss Law, the net carrier densities (nt;b) on
the layers and the interlayer asymmetry (U) depend on the
external gate voltage (Vg) and charged impurity densities, which
can be obtained by

ntþnb ¼ Cox=eVg0

2U ¼ e2d=ε0ðnt�ndtÞ ð5Þ
where nt ¼ ne

t �nh
t (nb ¼ ne

b�nh
b) is the net carrier density of the top

(bottom) layer, Cox is the gate capacitance per unit area, ndt is the

compensated charged impurity density of the top layer, and
Vg0 ¼ Vg�VNP is the compensated gate voltage, with VNP being
the corresponding gate voltage of minimum conductivity. By con-
sidering the dominant Hartree term of the interaction but neglect
exchange and correlation energies, the electron and hole densities
ne
t;b;n

h
t;b on the individual layer are given by, respectively [20,21]

nh
t;b ¼

mng
4πℏ2

Z �jUj

�1

ffiffiffiffiffiffiffiffiffiffiffiffi
ε7U
ε8U

s
ð1� f 0ðεÞÞ dε

ne
t;b ¼ nc

t;bþnv
t;b ð6Þ

with

nc
t;b ¼

mng
4πℏ2

Z þ1

jUj

ffiffiffiffiffiffiffiffiffiffiffiffi
ε7U
ε8U

s
f 0ðεÞ dε

nv
t;b ¼ 8

mngU
4πℏ2 ln

2γ1
jUj ð7Þ

where the plus (minus) sign corresponds to the top (bottom) layer,
nc
t;b and nv

t;b are the conduction and filled valence band electron
density on the individual layers, respectively. Once a compensated
gate voltage (Vg0) or net carrier density (n) is given, U and μ can be
obtained by the solution of Eqs. (5)–(7) self-consistently, which will
be used to calculate the carrier conductivity of doped and biased
BLG in the following part.

In our Boltzmann theory, we consider three distinct scattering
mechanisms that can be significant factors in determining the BLG
conductivity, namely the charged impurity, substrate surface polar
phonon, and in-plane acoustic phonon scattering processes. Given
that the substrate surface polar phonon scattering is inelastic, the
relaxation time approximation cannot be used since it is impos-
sible to define a simple relaxation time that does not depend on
the distribution function. For such cases, the actual distribution
function under low-field condition can be derived by the Rode
iterative method [22]. If we use the Legendre expansion for the
distribution function and only keep terms that are linear in the
field, we have

f ðkÞ ¼ f 0ðkÞþgðkÞ cos θ ð8Þ
where θ is the angle between the k vector and the applied electric
field F, f 0ðkÞ is the equilibrium distribution function, and gðkÞ is a
function of the k vector, which can be obtained by

gðkÞ ¼
I1ðkÞþeFvk

∂f 0k
∂ε

1
τelmðkÞ

þ I0ðkÞ
ð9Þ

with

I1ðkÞ ¼∑
k0
gðk0Þ cos θ½Sink0 ;kð1� f 0kÞþSink;k0 f 0k�

I0ðkÞ ¼∑
k0
Sink0 ;kf

0
k0 þSink;k0 ð1� f 0k0 Þ ð10Þ

where τelmðkÞ or τelmðεÞ is the energy-dependent momentum relaxa-
tion time in the elastic scattering processes, and Sink;k0 is the
scattering rate from the state k to the state k0 in the inelastic
scattering processes. They are derived by the Fermis golden rule,
respectively

1
τelmðεÞ

¼ 2π
ℏ
∑
k0
jMelðk;k0Þj2ð1� cos θkk0 Þδðεk�εk0 Þ ð11Þ

and

Sink;k0 ¼ 2π
ℏ
jMinðk;k0Þj2δðεk0 �εk7ℏωÞ ð12Þ

where θkk0 is the scattering angle between the scattering in and
out wave vectors k and k0, Melðk;k0Þ and Minðk;k0Þ is the matrix

Fig. 1. Schematic of the AB-stacked BLG on SiO2. Cross section shows compensated
charged impurity ndt (ndb) on the top (bottom) layer of the BLG.
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