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H I G H L I G H T S

� We derive the resonance frequency
and buckling load for nanoplates
with a high-order surface stress
model.

� Compared to conventional surface
stress model, our model shows that
the high-order surface stress effect
could be significant.

G R A P H I C A L A B S T R A C T

This figure presents the compressive buckling force for a simply-supported circular nanoplate. Our
model demonstrates that the high-order surface effect can be significant.
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a b s t r a c t

This work presents a theoretical study of the resonance frequency and buckling load of nanoplates with
high-order surface stress model. A classical thin plate theory based on Kirchhoff–Love assumption is
implemented with surface effects. Circular and rectangular nanoplates with simply supported end
conditions are exemplified. The size-dependent solutions are compared with the simplified solutions
based on simple surface stress model, and also on the classical theory of elasticity. We aim to explore the
scope of applicability so that the modified continuum mechanics model could serve as a refined ap-
proach in the prediction of mechanical behavior of nanoplates.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nanoplates (NPs) and nanowires (NWs) are typical nanos-
tructures in nanoelectromechanical systems. From mechanics
viewpoints, NPs can be viewed as a two-dimensional analog of
NWs, as the former can be modeled as a thin plate, while the latter
is often modeled as a one-dimensional beam. Continuum me-
chanics approaches [1], with suitable implementations, have been
demonstrated as useful tools to model the mechanical behavior
of nanostructures. In the last years, quite a few studies have been
focused on the mechanical behavior of NWs, see for example

[2–6]. The approach is mainly based on the classical continuum
mechanics incorporated with surface effects to simulate the size-
dependent behavior in nanoscaled solids. Specifically, the surface
effect is often modeled by a thin membrane assumption [7–9],
assuming that the surface effect is acting like a membrane sub-
jected to in-plane stress. The jump condition along the interface
was known as the generalized Young–Laplace equation. In many
cases the prediction is fairly satisfactory and efficient compared
with the atomistic analysis or molecular dynamics calculation [10].
In our previous study [25] on buckling and resonance behavior of
NWs, however, we found that there are situations where the nu-
merical prediction by the pure surface stress model is not able to
capture the general trend of the experimental data, especially for
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small sizes of NWs. In contrast, the high-order surface effect model
will give to a good simulation with the experimental results.

Motivated by the lack of sufficient accuracy in NWs, here we
implement the high-order surface model in the modeling of
buckling load and resonance frequency of NPs. High-order surface
stress model [11,12] is a refined model of the membrane surface
stress model, accounting into the flexural rigidity of the mem-
brane. The main difference is that the in-plane surface stress could
be varying across the thin layer thickness and thus, equivalently, it
is equivalent to a resultant in-plane surface force together with a
resultant surface moment. As such the model that incorporates
surface moment is referred to as high-order surface stresses
model, as it includes microstrain as well as curvature along the
interface. We mentioned that the conventional surface stress
theory, proposed by Gurtin and Murdoch [7,8], postulated that the
surface or interface can be modeled as a thin membrane that can
sustain only in-plane stresses, and thus can be viewed as a sim-
plified model of the high-order one. We find interestingly that the
governing frameworks of both models do not differ much. Yet the
numerical calculations demonstrate that, depending on the re-
lative size of the plate, the high-order effect can be significant and
should not be ignored in certain cases. In illustration, circular and
rectangular nanoplates with simply supported are exemplified.
Analytic and numerical solutions of the derived results are com-
pared with the simplified solutions based on conventional surface
stress model and on the classical elasticity solutions. It is our aim
to explore the scope of applicability to the analysis of nanos-
tructures that the refined continuum mechanics model could be a
feasible approach in the estimate of mechanical behavior of na-
noplates. In the literature the related studies on nanoplates in-
clude the works [13–23], in which the formulation is mainly based
on simple surface stress model. We mention that the high-order
surface stresses model has been utilized in the modeling of NWs
[24,25] and also in the bending behavior of NPs [11].

2. Resonance frequency of nanoplates

The high-order surface stress model incorporates the effect of
in-plane surface stress σαj

s as well as surface moment αβm s along the
interface. By the balance of force and moment, the traction jumps
across the interface, between two different regions denoted by
superscripts (i) and (m), is given by [11]
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Here an orthogonal curvilinear coordinate ν ν ν( , , )1 2 3 is used
to describe the curved interface, in which ν1 and ν2 are two para-
metric curves describing the coordinate lines on the surface, and ν3

is the normal direction measured linearly from the surface. The
coefficients h1, h2, h3, with =h 13 , are the metric coefficients of the
coordinate system.

We first consider the resonance frequency of NPs with the
high-order surface stress model. For a circular NP, letting

θ→v v v r z( , , ) ( , , )1 2 3 and →h h h r( , , ) (1, , 1)1 2 3 in (1)–(3), the
traction jump condition (3) in the normal direction (z-direction)
can be written as
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where Rr and θR are respectively the radii of principal curvatures
along the radial and tangential directions. To consider the surface
stress effects with residual surface tension, we introduce the sur-
face constitutive relation [8]

σ τ δ μ τ λ τ δ τ= + − + + + +αβ αβ α β β α γ γ αβ α βu u u u( )( ) ( ) , (5)s
s
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in which λs and μs are surface Lame constants, τ0 is the residual
surface tension and αu s is the surface displacement component. The
Greek indices here take the numbers of 1–2 to describe the in-
plane coordinates. As in [11], the surface stress and stress couples
can be integrated from (5) through the thickness t of the isotropic
interphase layer (with Young's modulus Ec and Poisson's ratio νc).
As such the resultant force and couple (surface stress and surface
moment) can be integrated as
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In the formulation, the mid-plane curvature of thin layer καβ
0 and

the mid-plane strain εαβ
0 are taken to be the same as those of the

nanoplate.
To proceed, substituting (6) into (4), invoking that κ=R(1/ )r r ,

κ=θ θR(1/ ) , the jump condition (4) is equivalent to a transverse
distributed load, denoted by θ⁎q r( , )

θ σ σ τ= − = ∇ − ∇ ∇⁎ ⎡⎣ ⎤⎦q r w D w( , ) 2 2 2 ( ). (8)zz
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Here the factor ‘2’ comes from the parts of top and bottom surface
layers.

We find that the NP, incorporating the high-order surface stress
and residual surface stress, under the free vibration is governed by
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Here ⁎D is the effective flexural rigidity covering the effect of the
bulk and two thin surface layers based on classical lamination
theory [26]
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