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H I G H L I G H T S

� We consider hydrogen-like impurity
states in quantum dot with parabolic
confinement.

� New approach to calculation of im-
purity binding energy is developed.

� Electron wave function is de-
termined as expansion over 1D har-
monic oscillator states.

� Binding energy as function of the im-
purity position and magnetic field
strength are presented and discussed.

G R A P H I C A L A B S T R A C T

We present an effective numerical procedure to calculate the binding energies and wave functions of the
hydrogen-like impurity states in a quantum dot with parabolic confinement in the presence of magnetic
field.
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a b s t r a c t

We present an effective numerical procedure to calculate the binding energies and wave functions of the
hydrogen-like impurity states in a quantum dot (QD) with parabolic confinement. The unknown wave
function was expressed as an expansion over one-dimensional harmonic oscillator states, which de-
scribes the electron's movement along the defined z-axis. Green's function technique used to obtain the
solution of Schredinger equation for electronic states in a transverse plane. Binding energy of impurity
states is defined as poles of the wave function. The dependences of the binding energy on the position of
an impurity, the size of the QD and the magnetic field strength are presented and discussed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Quantum dots (QDs) are artificial structures in which the mo-
tions of the charge carriers are limited to three directions. The type
of confinement potential used determines their possible states,
such as the band structure and the basic physical properties of the
QDs. Two important factors are the impurity states (IS) and the
external field, without which it would be difficult to practically
implement QDs in electronics and they can affect the band
structure. Since Bastard first calculated [1] the impurity binding
energy in a quantum well (QW), many works have been published

on this subject. Over the last three decades, new calculation
methods have been developed to determine the IS in QWs and
QDs, by assuming the form of the confinement potential [2–5], the
features of the band structure [5–9] and the types of impurity
model–hydrogen- [1–9] or helium-like [10–15]. The form of the
confinement potential is a significant characteristic. In particular,
(as mentioned in Ref. [16]) the advantages of devices based on QDs
(compared with QWs) have become possible because of the
synthesis of QDs that satisfy the rigid requirements of size, shape,
uniformity and density, which ultimately affect the choice of the
potential used to confine the charge carriers in the QDs. Although
the most widely used model for QDs has a spherical symmetry
potential, allowing for simple and convenient (for the following
analysis) solutions, it only provides a qualitative picture, because
there are many factors that reduce the symmetry, making the
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problem very complicated. In this sense, a model with a parabolic
potential and a low symmetry is more adequate. The practicality of
this model has been demonstrated in many studies (see Ref. [5]
and the references therein).

A study of the effect of an external field on the energy spectrum
of low-dimensional structures also led to the work performed by
Bastard [17], where the electron eigenstates in a QW under an
electric field were calculated.

In QDs, only discrete energy levels for the electron states are
possible, unlike in QWs where the electron energy levels are
quantized for the movement along growth axis of the QW. Thus,
applying a magnetic field to the structure is an efficient tool to
study the energy spectrum of a QD. Studies of the magnetic field
effect on the electron states in a QD have been performed over the
past three decades using various methods, where variational
techniques [18], a perturbation approach [19], numerically solving
the Schrödinger equation [20], and strong-confinement ap-
proaches [21] have been developed. The variational approach is
one of the most exploited methods used to study the energy
spectra of QDs. For some particular cases of QDs size variational
results were confirmed with calculations, according to the per-
turbation theory [19,22]. The well-known limitations of the var-
iational approach are: the accuracy of the method cannot be es-
timated and a trial wave function needs to be constructed for each
IS. Other disadvantages for the above techniques include the dif-
ficulty of the calculation methods and/or the specific conditions
(as for the magnetic field, QD size) of their applicability. These
problems are absent in the approach proposed below.

In the present study, the problem of the hydrogen-like IS in
QDs with parabolic confinement, under a magnetic field is con-
sidered and solved. Our approach has allowed formulating the
problem as a system of algebraic equations, where variables de-
termine the wave function of the electron, and the condition of
solvability of the system leads to a direct calculation of the binding
energy. The approach did not use any additional (non-physical)
parameters, allowing for the control of the accuracy of the results
obtained. This approach allows calculates both the ground and the
excited states.

2. Numerical procedure

Here we consider an isolated donor in a QD with parabolic
confinement, Vc(R, z), under a magnetic field. The corresponding
Hamiltonian in cylindrical coordinates (R, z, θ) can be written as
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where mn is the effective mass of an electron. Vc(R, z)¼mnω2(R2þz2),
where ω is the angular frequency of the parabolic confining potential,
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the Coulomb interaction between an electron and an impurity ion, e is
the unit charge, κ is the permittivity, κ0 is the dielectric constant, and
z0 is the position of the impurity atom. Because of the axial symmetry
of the system, the projection of the angular momentum onto the z-
axis was conserved, Lz¼ℏm (m¼0, 71, 72, … and is the magnetic
quantum number) and their eigenfunctions (exp(imz)) determine the
dependence of the unknown electron wave function ψ(R,θ,z) at an
angle, θ: where ψ θ θ ψ≡R z im R z( , , ) exp( ) ( , ). By solving the one-di-
mensional Schrödinger equation for the unknown functions, φ(z)
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the basis for an expansion of the wave function can be obtained

∑Ψ ρ θ φ→ =z im f R z( , ) exp( ) ( ) ( ).
(2)

m
n

n
m

n

The same approach has been used for impurities in an inver-
sion layer [23] and in QWs. [24, 25] By substituting Eq. (2) into Eq.
(1) and using the dimensionless variables
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which are the units of distance (Bohr radius, ab) and energy
(Rydberg, Rn), the magnitude of the confining potential (β2) and
the magnetic field (γ), a system of differential equations was ob-
tained
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Since ab is a unit of distance, β2 can be considered as the in-

verse of the dimensionless length Lc, i.e. β2¼1/Lc2, where Lc,
corresponds to the size of the QD [19].

In the following, to find a solution to Eq. (3) Green's function,
GN (R, R′) was introduced through the definition
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which does not depend on energy.

Fig. 1. Binding energy versus QD size Lc (circles–perturbation calculation [19], so-
lid–our results).

Table 1
Binding energy for the various calculation parameters.

γ¼2, z0¼0 γ¼0.5, z0¼1

Number of QD
level

NR�ΔR Eb Number of QD
level

NR�ΔR Eb

5 120�0.050 4.962 5 80�0.050 3.730
7 120�0.035 4.972 6 120�0.035 3.745
7 180�0.025 4.990 6 150�0.030 3.745
7 220�0.025 4.988 7 150�0.030 3.754
9 180�0.025 4.993 8 180�0.025 3.757
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