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H I G H L I G H T S

� Inseparable piecewise potential is
used as the relativistic confinement
potential of the quantum dot.

� Theoretical approach is based on
elimination of the inexactness of the
wave vector components employing
the transfer matrices, and the re-
flection and the rotation symmetries
of the dot.

� The transcendental energy relations
of the dot are obtained as 2fold de-
generate and quantized by half of
the rotation angles, similar to non-
relativistic case.

� Considerable energy differences be-
tween these descriptions are ob-
served due to spin effect.

G R A P H I C A L A B S T R A C T

Comparison of the finite-barrier rectangular quantum dot energy solutions for Schrödinger and Dirac
descriptions, where gray geometric objects are for energy solutions of inside wave vector component xκ
defined quantized transcendental energy relations of Schrödinger and Dirac descriptions, while black
ones for those of the inside wave vector component yκ defined relations, for n¼0,1 values. Schrödinger
description results of inseparable finite barrier rectangular quantum dots are expanded to relativistic
Dirac description.
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a b s t r a c t

The Schrödinger description of 2-d finite barrier rectangular quantum dots [1] is expanded to Dirac
description through transfer matrices and reflection and rotation symmetries of the dot system. In-
exactness of wave vector components of spinors is then reduced to two relations which lead to two
different bispinors and four quantized transcendental energy relations corresponding to even–even,
odd–odd and even–odd, odd–even factorizing functions of each bispinor. In order to show the spin effect
on the dot energy levels, the solutions of the transcendental relations of the Schrödinger and Dirac
descriptions are plotted.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Quantum dots that have the ability to confine tunable
number of carriers in all spatial dimensions [2,3], have been

intriguing theoretical and experimental research area due to
their possible implementations in future electronic devices [4].
In addition to the charge at which all electronic properties rely
on, since the carriers have also spin aspect, it turns out that
individual spins of the carriers can also be controlled and
measured in quantum dots [5–7]. This fact has originated the
investigations of single spin dynamics in solid-state physics
context such as spintronics [8,9] in analogy to single electronics,
and quantum bits [10,6,11,12].
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The spin of an electron trapped in a quantum dot interacts with
its environment which consists of charge and spin degrees of
freedom. The attractive potential and the spin–orbit and hyperfine
interactions are these degrees of freedom due to charge and spin
respectively [13,14,6].

Spin is a fully relativistic aspect of electrons and should be
properly treated by the Dirac equation [15,16]. To our knowl-
edge, Dirac equation has never been used to model even a sin-
gle-electron state of quantum dots, except in the investigations
represented by [17–19] in which graphene quantum dots have
been studied. After the discovery of wonder material graphene,
a honeycomb lattice of carbon atoms [20–22], the massless
Dirac equation has been employed to explain electronic prop-
erties of graphene [23]. It is now a necessity to employ the Dirac
equation in order to analyze honeycomb lattice carbon materials
such as graphene [24], carbon nanotubes [25], and fullerenes
[26,27].

Since the shape of the potential is crucial to analyze the dot
system, chosen shape of the potential must have a solution in the
Dirac description for dot system. However Dirac equation has quite
limited number of exact solutions for 2-d and 3-d potentials
[28,15], since an electrostatic potential is quadratically coupled
with the energy. For instance the Dirac oscillator potential is es-
sentially a scalar potential instead of an electrostatic one [29,30].
These facts make the finite high piecewise potential
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a perfect candidate for Dirac description of an electron confined in
a rectangular shape quantum dot.

An algebraic approach to finite barrier rectangular quantum dot
system has been accomplished [1] in which outside wave vector
components have been obtained by means of inside wave vector
components employing the transfer matrices on the boundaries of
the dot. Then inexact definitions of inside wave vector compo-
nents have been reduced to two different relations by means of
inside wave vector imposing parity and rotation symmetries of the
dot on the wavefunction. It has turned out that the two definitions
of inside wave vector components lead two different wavefunc-
tions and two quantized transcendental energy relations corre-
sponding to even–even and odd–odd factorizing functions of each
wavefunction.

In this work we intend to expand the Schrödinger description
[1] to relativistic domain finding quantized energy relations of a
single-electron confined in an inseparable piecewise potential (1)
within a non-noise circumstances using the well-known transfer
matrix method. First which conditions are necessary to define a
Dirac Hamiltonian in a solid-state continuum are explained. Then
from the continuity condition of the Dirac equation in the semi-
conductor continuum, the transfer matrices of the spinor are
written, then relations between inside and outside wave vector
components are found by means of the continuity condition which
is the relativistic counterpart of the BenDaniel–Duke conditions. In
order to obtain the constraints of inside wave vector components,
parity and rotation symmetries of the dot are imposed on the
spinor. Consequently, energy relations of bound states which
correspond to both spin-up and spin-down states of the dot occur
in a quantized transcendental form.

2. Dirac description of the quantum dots

When the Fermi energy level is set to zero while the energy
differences E EC F− and E EF V− correspond to the rest mass

energies of the particle and antiparticle respectively, an analogy
can be drawn between conduction and valance bands of a semi-
conductor and rest mass energies of the field-free vacuum. The
energy differences of electron and hole carriers are defined by

E E m v E E m vand , (2)C F e F V h
2 2− = − =⁎ ⁎

where v being speed of light, and me
⁎ and mh

⁎ are effective masses
of electron and hole carriers in the semiconductor, respectively.
Therefore the transition of an electron from the occupied states
of valance band to the unoccupied states of conduction band
which gives rise an electron–hole pair [31, chapter 5] can be
considered as the solid-state counterpart of the particle–anti-
particle creation of vacuum. With this analogy the time-inde-
pendent Dirac Hamiltonian of the electron–hole carrier pair can
be written as

H v p m v V x y x. ( , , ), (3)e h e h, ,
2α β= + +⁎

where α and β are usual Dirac matrices, and pe h, represents mo-
mentums of electron and hole respectively.

Despite the fact that there is a similarity between the transition
and the particle–antiparticle creation, the discrete charge con-
jugation symmetry by which particle and its antiparticle are in-
terchanged [32, section 3.6] is not fundamental, since the effective
masses of the carrier pair depend on the their energy bands in a
solid. The electron–hole symmetry, the solid-state counterpart of
charge conjugation symmetry, only occurs permanently when the
effective masses of the carrier pair are equal or zero. Since the
broken electron–hole symmetry is the general case in which the
Dirac Hamiltonian of a semiconductor cannot be a proper de-
scription of the system, only a semiconductor quantum dot system
that posses equal effective masses can be considered in the Dirac
description.

Since a quantum dot structure consists of two different semi-
conductor materials, the speed of light and the effective mass
quantities of the Dirac Hamiltonian (3) should be considered as
piecewise functions:
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It is important to note that, inside of the dot has to be elec-
tron–hole symmetric since the Dirac Hamiltonian (3) must be
Lorentz-invariant. When inside and outside materials of the
structure have different electron–hole symmetries, the charge
carriers have the same amount of potential value in opposite
signs. Therefore when one has solved the Dirac equation of one
carrier, the energy values of other carrier appear exactly with
opposite sign. On the other hand if outside of the dot is made of a
material which does not possess the symmetry, then the con-
finement potentials of the carriers differ from each other and
hence their energies.

3. Rectangular quantum dot with inseparable potential

In order to employ the approach given by [1] in the relativistic
domain, we choose a 2-d rectangular semiconductor quantum dot
structure whose time-independent Dirac equation of confined
negative charge carrier reads

i v m v V x y x y E x y[ ( ) ( , )] ( , ) ( , ), (6)x x y y z
2σ σ σ χ χ− ∂ ± ∂ + + =⁎

± ±
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