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H I G H L I G H T S

� We studied magnetocaloric properties of quantum nanoribbon.
� The entropy change of low-dimensional materials exhibits an oscillating behavior.
� The model provides a relationship between the confinement potential and the nanoribbon width.
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a b s t r a c t

We investigate the oscillating magnetocaloric effect on a diamagnetic nanoribbon, using the model of a
quasi-one-dimensional electron gas (Q1DEG) made with a parabolic confinement potential. We obtained
analytical expressions for the thermodynamic potential and for the entropy change. The entropy change
exhibits the same dependence on field and temperature observed for other diamagnetic systems. The
period of the field-oscillating pattern is �0.1 mT and the temperature of maximum entropy change is
�0.1 K with an applied field of the order of 1 T. An interesting feature of the results is the dependence of
the oscillations with the strength of the confinement potential, as well as the possibility to provide a
relationship among this last with nanoribbon width. In the limit of null confinement potential our
expressions match those for the 2D diamagnetic system.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Magnetocaloric effect (MCE) is a response of magnetic materi-
als to a magnetic field change ΔB : Bi-Bf , which is related to an
entropy change in the magnetic subsystem. In adiabatic processes
(ΔS¼ 0), a corresponding entropy change in the other subsystems
leads to a temperature change ΔT . In isothermal processes, the
entropy change is related to a heat exchange ΔQ ¼ TΔS with a
thermal reservoir. Thus, the effect is characterized by the quan-
tities ΔS and ΔT .

Nowadays, MCE is a hot topic of research, mainly due to its
application in magnetic refrigeration. The idea of using the MCE
for refrigeration purposes was first suggested by Debye [1] and
Giauque [2] in the late 1920s. Research of materials is particularly
focused in magnetically ordered materials, because MCE is stron-
ger in the vicinity of a phase transition. The interested reader is

referred to Refs. [3,4], which are recent reviews on magnetocaloric
effect and magnetocaloric materials applied to refrigeration.

However, magnetocaloric properties of diamagnetic materials
have been studied recently [5–8]. It is shown that both the entropy
change and the temperature change present oscillations when the
applied field is varied. These oscillations are caused by the crossing
of the Landau levels through the Fermi energy; a mechanism
analogous to the so-called de Haas–van Alphen effect. The oscilla-
tory MCE was studied in 3D diamagnets [5,6] (a diamagnetic
material in bulk), in 2D diamagnets of non-relativistic behavior [7]
(a thin film of diamagnetic material), and in graphene [8]. Also, the
effect of the film thickness was reported [9]. The oscillating
magnetocaloric effect of diamagnetic materials is weaker than
that observed in ferromagnets, for instance. Thus, such materials
are not suitable for magnetic refrigeration applications. However,
due to the oscillations, diamagnetic materials could work as highly
sensitive magnetic field sensors [5,6,10].

Another system of reduced dimensionality is a nanoribbon,
which is the realization of a quasi-one-dimensional electron gas
(Q1DEG). Such model was first proposed by Sakaki [11] in 1980 to
describe a medium of high electron mobility, making it applicable
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in high-speed electronic devices. Indeed, one-dimensional materi-
als can be tailored with oxide interfaces [12] aiming at application
in electronics. The Q1DEG model can also be used to describe a
quantum wire working as an active laser medium [13]. If spin–
orbit coupling is included in the model, a quantum wire exhibits
exotic physics, such as Majorana fermions [14].

In the present work, we theoretically investigate the magneto-
caloric effect in quantum nanoribbons, using a Q1DEG. In the next
section we briefly describe the model that will be used, discussing
the energy spectrum of the electron gas. In the following section
we use the energy spectrum to evaluate the grand canonical
potential from which we obtain the entropy. Then, we evaluate
and discuss the entropy change of the Q1DEG. By the end, the
appendix presents details on the evaluations.

2. The model

The present model considers a two dimensional electron gas
confined along one direction due to a lateral potential. This
situation mimics a quantum nanoribbon; and the size quantization
used for the present study is a parabolic approximation given by

U ¼m
2
ω2

0r
2: ð1Þ

The present section then describes the energy spectra of the proposed
model for two cases: with and without applied magnetic field.

2.1. Zero-field case

The Hamiltonian of a 2D electron gas confined along the
y direction with a parabolic potential is

H¼ 1
2m

p2x þp2y
� �

þm
2
ω2

0y
2: ð2Þ

The above Hamiltonian has a wave function of the form:

ψ ðx; yÞ ¼ χðyÞ exp ipxx
ℏ

� �
; ð3Þ

that leads to the following Schrödinger equation:

� ℏ2

2m
∂2

∂y2
þm

2
ω2

0y
2

" #
χðyÞ ¼ ϵ� p2x

2m

� �
χðyÞ; ð4Þ

in which the energy spectrum is

ϵ¼ ϵn;px ¼
p2x
2m

þℏω0 nþ1
2

� �
: ð5Þ

Note thus this system contains a plane wave along the x direction
and quantum harmonic oscillations depending on y. This last
represents the Landau levels and n is the Landau index.

2.2. Magnetic field dependence

In the case of an applied magnetic field along the z direction
B¼ ð0;0;BÞ, i.e., perpendicular to the 2D electron gas, we can use the
gauge where A¼ ð�By;0;0Þ to rewrite the above Hamiltonian as

H¼ 1
2m

ðpx�eByÞ2þp2y
h i

þm
2
ω2

0y
2: ð6Þ

The wave function is again as the one in Eq. (3) and therefore the
Schrödinger equation reads as

� ℏ2

2m
∂2

∂y2
þm

2
~ω2ðy�y0Þ2

" #
χðyÞ ¼ ϵ� p2x

2m
ω2

0

~ω2

� �
χðyÞ; ð7Þ

where ~ω2 ¼ω2
c þω2

0 andωc ¼ eB=m is the cyclotron frequency of the
system due to the applied magnetic field. In addition, these harmonic

oscillators are centered at

y0 ¼
px
m
ωc

~ω2; ð8Þ

and the total system has a energy spectrum similar to the zero-field
case (Eq. (5)), and resumes as

ϵ¼ ϵn;px ¼
p2x
2m

ω2
0

~ω2þℏ ~ω nþ1
2

� �
: ð9Þ

Note the gap between Landau levels changed from ℏω0 to ℏ ~ω, that,
on its turn, depends on both, cyclotron frequencyωc and the strength
of the confinement potential ω0.

The centers of those harmonic oscillators on Eq. (7) must be
confined to the size of the nanoribbon and therefore the condition
0ry0rLy must hold. As a consequence, px is bounded to

0rpxrmLy
~ω2

ωc
¼ pm: ð10Þ

On the other hand, the Born–von Karman boundary conditions
impose the quantization of the wave vector kx:

px ¼ ℏkx ¼ ℏ
2π
Lx

l; ð11Þ

where l¼ 0;1;2;…; and, consequently, from this information and
0ry0rLy, it is possible to obtain the multiplicity of the Landau
levels, i.e., the maximum l value:

lmax ¼
mLxLy
2πℏ

~ω2

ωc
: ð12Þ

3. Grand canonical potential

The grand canonical potential is given by the expression

Ω¼ �kBT
Z 1

0
ρðϵÞ ln 1þexp

μ�ϵ
kBT

� �� �
dϵ; ð13Þ

where ρðϵÞ is the density of states, T is the temperature, μ is the
chemical potential and kB is the Boltzmann constant. The density
of states of a quantum nanoribbon is given by [15]

ρðϵÞ ¼ Lx
2π2ℏ

∑
1

n ¼ 0

Z
Γ

ðϵ�ϵn;px Þ2þΓ2 dpx; ð14Þ

where Lx is nanoribbon size along the x-axis and Γ is the width of
Landau levels. Considering Γ¼0, the density of states resumes as

ρðϵÞ ¼ Lx
2πℏ

∑
1

n ¼ 0

Z
δðϵ�ϵn;px Þ dpx; ð15Þ

and therefore

Ω¼ �LxkBT
2πℏ

∑
1

n ¼ 0

Z
ln 1þexp

μ�ϵn;px
kBT

� �� �
dpx: ð16Þ

Due to the structure of the Poisson formula (see Eq. (A.2)), the
grand canonical potential has two contributions:

Ω¼Ω1þΩ2; ð17Þ
and below these two are described in further detail. The limits on
the px integral depend on the considered case, i.e., either with or
without applied magnetic field.

3.1. Zero-field case

Details on the evaluation of Eq. (16) are in Appendix A; and the
results for ΩB ¼ 0

1 and ΩB ¼ 0
2 are

ΩB ¼ 0
1 � �2

ffiffiffiffiffiffiffi
2m

p
Lx

3ℏ2ω0

π
4
k2BT

2 ffiffiffi
μ

p þconst; ð18Þ
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