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a b s t r a c t

We use the quantum kinematic approach to revisit geometric phases associated with polarizing
processes of a monochromatic light wave. We give the expressions of geometric phases for any, unitary
or non-unitary, cyclic or non-cyclic transformations of the light wave state. Contrarily to the usually
considered case of absorbing polarizers, we found that a light wave passing through a polarizer may
acquire in general a nonzero geometric phase. This geometric phase exists despite the fact that initial and
final polarization states are in phase according to the Pancharatnam criterion and cannot be measured
using interferometric superposition. Consequently, there is a difference between the Pancharatnam
phase and the complete geometric phase acquired by a light wave passing through a polarizer. We
illustrate our work with the particular example of total reflection based polarizers.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The concept of geometric phase naturally arises for polarized
light in optics. In 1956, Pancharatnam [1] studied how the phase of
polarized light changes after a cyclic evolution of its polarization.
He found that light wave acquires, in addition to the usual phase
associated with the optical path, a geometric phase depending
only on the relative loci of the polarization states on the Poincaré
sphere. Later, Berry [2] developed the concept of geometric phase
for dynamical quantum systems with cyclic adiabatic unitary
evolutions and showed its similarity with the Pancharatnam phase
in optics [3]. The existence of geometric phase has been also
demonstrated for nonunitary and noncyclic evolutions [4,5], and
recently for open quantum systems [6–10]. Many experiments
[11–18] have provided evidence for geometric phase in the context
of polarized light. Along a given path, closed or not, on the
Poincaré sphere, bringing the polarization from a state j1〉 to a
state j2〉, the light wave state acquires a geometric phase which is
equal to minus half of the solid angle enclosed by the effectively
followed path and the geodesic connecting states j1〉 and j2〉 [5]. If
the path coincides with the geodesic then no geometric phase is
gained. Since any cyclic path on the Poincaré sphere is at least
a concatenation of two geodesics and is therefore by itself not
a geodesic, a light wave along such a path acquires de facto a

nonzero geometric phase. This property has been widely used in
the above cited experiments where cyclic evolution of the polar-
ization state was usually achieved using retarders (unitary trans-
formations) [11–14,16], polarizers (non-unitary transformations)
[16–18], and both [11,15].

When a retarder (e.g. a wave plate) is used on a light wave, its
polarization follows then a piece of circle on the Poincaré sphere
and a geometric phase is consequently acquired (except if the
piece of circle is a piece of great circle of length less than π). As far
as we know, in the literature, the action of a polarizer is considered
to not introduce geometric phase since it is considered to project
the light wave polarization from a state onto another following a
geodesic [11,15–18]. This is effectively true for the case of absorb-
ing polarizers. We find that this is no longer true if one considers
total reflection based polarizers since the path followed by the
polarization is no more a geodesic but a loxodrome. More
generally, we show that even if a light wave state j1〉 is projected
onto another state j2〉〈2j1〉, for example by means of a polarizer, a
nonzero geometric phase can be acquired by the light wave. At the
end of such a transformation the acquired geometric phase is
exactly compensated by the acquired dynamic phase in such a way
that the total phase has no memory of these two phases. As a
consequence interferometry measurements are not able to capture
possible geometric phase acquired during a state projection.

However the Pancharatnam phase [1], which is a kind of
geometric phase, can be measured using interferometry experi-
ments. As reminded by de Vito and Levrero [19], we can consider
that a light wave acquires a Pancharatnam phase if in the Hilbert

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physe

Physica E

1386-9477/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physe.2013.12.003

n Corresponding author.
E-mail address: jose.lages@utinam.cnrs.fr (J. Lages).

Physica E 59 (2014) 6–14

www.sciencedirect.com/science/journal/13869477
www.elsevier.com/locate/physe
http://dx.doi.org/10.1016/j.physe.2013.12.003
http://dx.doi.org/10.1016/j.physe.2013.12.003
http://dx.doi.org/10.1016/j.physe.2013.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2013.12.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2013.12.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2013.12.003&domain=pdf
mailto:jose.lages@utinam.cnrs.fr
http://dx.doi.org/10.1016/j.physe.2013.12.003


space the light wave state is projected successively onto states the
polarizations of which marked out a cyclic path on the Poincaré
sphere. The use of successive polarizers ensures that the light
wave state is successively projected and then that a Pancharatnam
phase is indeed measured [16–18]. We show that the Panchar-
atnam phase is not the complete geometric phase indeed acquired
by a light wave since the Pancharatnam phase does not take into
account the geometric phase possibly acquired during the projec-
tion processes.

In this paper, we also provide the most general expression of
the geometric phase acquired by a light wave experiencing a
polarizing transformation. We address particularly the case of the
possible geometric phase acquired by a light wave passing through
a total reflection based polarizer. The paper is organized as
follows: In Section 2, we define the mathematical formalism
describing the light wave state and its polarization. Using the
quantum kinematic approach [20], in Section 3, we describe the
geometric phase and the modulus of the degree of coherence as
the gauge invariant quantities associated with a non-unitary
evolution of the light wave state. In Section 4, we classify any
light wave state transformation induced by a polarizing element in
terms of SLð2;CÞ transformations. In Section 5, first, we revisit the
case of unitary transformations corresponding to retarders or to
media with optical activity and the case of nonunitary transforma-
tion corresponding to absorbing polarizing elements. Then, we
show that, in the case of nonunitary transformation combining
both differential attenuation and differential dephasing a light
wave does acquire a geometric phase and we derive its expression.
In Section 6, we derive for the sake of completeness the total
phase and the dynamic phase acquired by a light wave passing
through a polarizing device using the model [21]. In the frame of
this model we express the Pancharatnam criterion [1]. In Section
7, we apply the results derived in Section 5 for general polarizing
elements to the specific case of polarizers. We found that a
polarizer in general does induce a nontrivial geometric phase
and we derive its expression for the case of a total reflection based
polarizer. This geometric phase exists despite the fact that the
initial and final polarization states are in phase according to the
Pancharatnam criterion and is a direct reminiscence of the
evanescent component of the electromagnetic field inside the
polarizer. In the limit where differential absorption is predominant
over birefringence (e.g. in polaroid films), we retrieve as expected a
zero geometric phase. In Section 8, we discuss the difference
between the Pancharatnam phase and the geometric phase
acquired by a light wave.

2. Polarization, space of rays, and Poincaré sphere

A polarized light wave may be described by a vector jψ 〉 lying in
a two dimensional complex Hilbert space H. Such a vector jψ 〉 may
be written as

jψ 〉¼
ffiffi
I

p
eiΦ cos

θ
2
j0〉þeiϕ sin

θ
2
j1〉

� �
ð1Þ

where I¼ 〈ψ jψ 〉ARþ is the light wave intensity, ΦA ½0;2π½ a
global phase, ϕA ½0;2π½ a relative phase, θA ½0;π� the polar angle,
and fj0〉; j1〉g an orthonormal basis of H. The vectors j0〉 and j1〉
represent e.g. the normalized state with circular right-handed
polarization and that with circular left-handed polarization
respectively.

The polarization of the light wave jψ 〉 depends only on the
ellipticity angle χ and on the azimuthal angle Ψ [22] which are
directly related to the polar angle θ¼ π=2�2χ and to the relative
phase ϕ¼ 2Ψ . So, two light waves jψ 〉 and jψ 0〉¼ ajψ 〉, where a is a
complex factor, share the same polarization. We say that jψ 〉 and

jψ 0〉 are equivalent, i.e. jψ 0〉� jψ 〉, in the sense that it is possible to
convert one of these wave to the other by using a complex scale
transformation. Let us then define the space R of unit rays by

R¼H=� ¼ fρ¼ I�1jψ 〉〈ψ jjjψ 〉AHg. An element ρ belonging to R
may be written as

ρ¼ 1
2
ðs0þ S

!� s!Þ� ρ
S
! ð2Þ

where s! is a three dimensional vector whose components are the
Pauli matrices fsigi ¼ 1;2;3 and where s0 is the 2�2 identity matrix.
Any projector ρ is associated with a unique normalized Stokes

vector S
!¼ sin θ cos ϕ e!1þ sin θ sin ϕ e!2þ cos θ e!3

. The set
of the endpoints of all the normalized Stokes vectors defines the

Poincaré sphere S2. Each S
!

vector is in bijective relation with a
point in the space of rays R, i.e. with a projector belonging to R.
So, the unit Poincaré sphere S2 is isomorphic to the space of unit
rays S2 �R. The set of vectors fjψ 0〉¼ ajψ 〉; aACg corresponds to a
unique projector ρ

S
! (2) and consequently corresponds to a

unique normalized Stokes vector S
!

. A wave jψ 〉 as defined in
Eq. (1) may be then represented, modulo a global complex factor, by
a point in the space of unit rays R or equivalently by a point on the
Poincaré sphere S2. The circular right(left)-handed polarization
state j0〉 (j1〉), corresponds to θ¼ 0 (θ¼ π), i.e. to the north (south)
pole of the Poincaré sphere. Linear polarization states correspond
to vectors of H with θ¼ π=2, or equivalently correspond to points
of the Poincaré sphere equator.

3. Local gauge invariance

Passing through an optical device, the state jψ 〉 of a light wave
evolves in the Hilbert space H along a curve C¼ fjψ ðsÞ〉AH
jsA ½s1; s2� �Rg �H. Let us now define another curve C0 the
elements of which are related to the elements of C by a local
gauge transformation, jψ 0ðsÞ〉¼ aðsÞjψ ðsÞ〉. Here, a(s) is a smooth
nonzero complex function of sA ½s1; s2�. Comparing 〈ψ 0ðsÞjd=
dsjψ 0ðsÞ〉 with 〈ψ ðsÞjd=dsjψ ðsÞ〉, it is possible to construct the
following complex gauge invariant expression [20]:

〈ψ ðs1Þjψ ðs2Þ〉
〈ψ ðs1Þjψ ðs1Þ〉

exp �
Z s2

s1
ds
〈ψ ðsÞj _ψ ðsÞ〉
〈ψ ðsÞjψ ðsÞ〉

� �
: ð3Þ

Here the dot denotes the differentiation with respect to the
parameter s. Let us define the projection map π : H-R such as,
for all aAC, πðajψ 〉Þ ¼ πðjψ 〉Þ ¼ ρAR. Since the curves C0 and C are
related by a gauge transformation, C� C0, they share the same
projected curve image C¼ πðCÞ ¼ πðC0Þ in the space of unit rays R.
As expression (3) is gauge invariant, it is a functional of the curve C
and, its modulus ιg½C� and complex argument ϕg½C� are also gauge
invariant functionals of the curve C. The modulus of Eq. (3) can be
written in the following form:

ιg½C� ¼
j 〈ψ ðs1Þjψ ðs2Þ〉jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Iðs1ÞIðs2Þ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trðρðs1Þρðs2ÞÞ

p
ð4Þ

which is also the modulus of the complex degree of coherence
γ12ð0Þ ¼ ιg½C�ei arg 〈ψ ðs1Þjψ ðs2Þ〉. Hence the modulus of the interference
term between the two normalized wave states ð1=

ffiffiffiffiffiffiffiffiffi
Iðs1Þ

p
Þjψ ðs1Þ〉

and ð1=
ffiffiffiffiffiffiffiffiffi
Iðs2Þ

p
Þjψ ðs2Þ〉 is a geometric invariant. The complex argu-

ment of Eq. (3) is the geometric phase [20] associated with the
curve C�R

ϕg½C� ¼ arg〈ψ ðs1Þjψ ðs2Þ〉� Im
Z s2

s1
ds
〈ψ ðsÞj _ψ ðsÞ〉
〈ψ ðsÞjψ ðsÞ〉

�ϕt½C��ϕd½C�: ð5Þ
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