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H I G H L I G H T S

� Computational formulation of an
elastic medium on nonlocal axial
vibration of rods is considered.

� Static and dynamic finite element
formulations are proposed.

� The nonlocal parameter impacts
both the element mass and stiffness
matrices.

� A closed-from exact expression is
derived for the upper cut-off natural
frequency.

� Nonlocal parameter and the elastic
stiffness respectively decrease and
increase the natural frequencies.

G R A P H I C A L A B S T R A C T

Variation of natural frequencies and frequency response function of single walled carbon nanotube
embedded in an elastic medium.
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a b s t r a c t

A novel dynamic finite element method is carried out for a small-scale nonlocal rod which is embedded
in an elastic medium and undergoing axial vibration. Eringen's nonlocal elasticity theory is employed.
Natural frequencies are derived for general boundary conditions. An asymptotic analysis is carried out.
The stiffness and mass matrices of the embedded nonlocal rod are obtained using the proposed finite
element method. Nonlocal rods embedded in an elastic medium have an upper cut-off natural frequency
which is independent of the boundary conditions and the length of the rod. Dynamic response for the
damped case has been obtained using the conventional finite element and dynamic finite element
approaches. The present study would be helpful for developing nonlocal finite element models and study
of embedded carbon nanotubes for future nanocomposite materials.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently, classical continuum mechanics is becoming popular for
modelling, understanding and predicting the physical behaviour
of nanostructures such as bending, vibration and buckling, etc. One
reason for employing continuummechanics is that the experiments at
the nanoscale are challenging; and atomistic computational methods

such as molecular dynamic (MD) simulations are computationally
expensive for nanostructures with large numbers of atoms. At the
nanoscale, scale-effects due to atoms, molecules, forces are important
and cannot be ignored. Thus classical continuum mechanics requires
upgrading for accurate predictions of behaviour of nanostructures.
Further, the discrete nature of structures at nanoscale needs to be
accounted for in continuum based modelling. To address the dis-
creteness and size-dependency [1–6], continuum mechanics based
methods [7–9] are gaining in popularity in the modelling of small
sized structures. This approach offers much faster solutions thanmole-
cular dynamic simulations for various nano engineering problems.
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One popularly used size-dependant theory is the nonlocal elasticity
theory pioneered by Eringen [10]. The theory of nonlocal elasticity
(nonlocal continuum mechanics) is being increasingly used [11] for
efficient analysis of nanostructures such as carbon nanotubes and
graphene. According to nonlocal elasticity, the stress at point is not
only dependent on the strain at the point but also on strains at all
other points in the domain.

For complex structures and loading, mere analytical modelling
is not sufficient for understanding the vibration phenomenon of
nanostructures such as CNT or graphene. One popular approach is
finite element (FE) modelling. Some works on finite elements and
nonlocal elasticity are reported for nanorods; however the
research is in its initial stage. Application of nonlocal elasticity
and finite elements is reported for the small scale effects on axial
free vibration of non-uniform and nonhomogeneous nanorods
[12]. Using dynamic nonlocal finite element analysis, Adhikari
et al. [13] studied free and forced axial vibrations of damped
nonlocal rods. Recently the concept of nonlocal elasticity is applied
for the development of a spectral finite element (SFE) for analysis
of nanorods [14].

Literature shows various works via nonlocal elasticity theory on
study of carbon nanotubes embedded in an elastic medium.
Analysis has been carried out both on the phenomenon of axial
[15,16] and transverse vibration [17–20] of carbon nanotubes
embedded in elastic medium. Single-walled [18,20,21] as well as
double-walled carbon nanotubes [22] being embedded were
studied. The carbon nanotubes may be with or without fluid
flowing [23] through it besides being embedded in an elastic
medium. Two types of elastic mediums are generally considered
for the study. The elastic medium models are based on one-
parameter (Winkler type) [15,21] as well as two-parameter (Pas-
ternak type) [18] elastic medium.

From the brief literature survey, we can see that significant
research effort has taken place in the nonlocal analysis of nanostruc-
tures embedded in an elastic medium including nanorods. However,
not much work has been done on the study of nanorods in an elastic
medium and considering finite element in details. The majority of the
reported works on nonlocal finite element analysis study free vibra-
tion studies where the effect of non-locality on the undamped
eigensolutions is studied. Damped nonlocal systems and forced
vibration response analysis have received little attention. This type of
study is useful for the design and analysis of future generation of nano
composite materials and structures. Thus in this paper we develop a
novel finite element method based on nonlocal elasticity for axially
vibrating nanorods in an elastic medium. Free and forced axial
vibration of damped nonlocal embedded rods are investigated. We
consider both the damped and undamped cases of vibration. The
present work on finite element for nanorods in embedded elastic
medium is expected to provide the general framework for improved
design methods.

2. Nonlocal rod embedded in an elastic medium

We consider a damped nanorod embedded in an elastic
medium [15]. In Fig. 1 a single-walled carbon nanotube (SWCNT)
embedded in an elastic medium is shown for example. The
equation of motion for the axial vibration can be expressed as
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The mass per unit length is denoted by m, the stiffness of the
elastic medium is denoted by k and the axial rigidity is denoted by
EA. The constant bc1 is the strain-rate-dependent viscous damping

coefficient and bc2 is the velocity-dependent viscous damping
coefficient. The nonlocal parameter [10], denoted by e0a, influ-
ences the inertial term as well as the stiffness of the elastic
medium. The case without the elastic medium was considered in
Ref. [13]. Here we aim to understand the impact of the elastic
medium on the nonlocal axial vibration of damped nanorods.

The equation of motion (1) can be solved by using the separation
of variable approach [24]. We express the time-depended axial
motion by

Uðx; tÞ ¼ uðxÞ exp½iωt� ð2Þ

Considering the forcing is zero (i.e., free vibration) and substituting
this in Eq. (1) one obtains

ðEAþðe0aÞ2kþ iωbc1�ðe0aÞ2mω2Þd
2u

dx2
þðmω2�k� iωbc2ÞuðxÞ ¼ 0

ð3Þ

For analytical convenience, the damping is expressed as propor-
tional to mass and stiffness by introducing the following two
damping factors:

bc1 ¼ ζ1EA and bc2 ¼ ζ2m ð4Þ

Note that ζ1 and ζ2 are stiffness and mass proportional damping
factors respectively. Eq. (3) can be reorganised as

d2u

dx2
þ ðmω2�k� iωζ2mÞ
ðEAþðe0aÞ2kþ iωζ1EA�ðe0aÞ2mω2Þ

uðxÞ ¼ 0 ð5Þ

This can be concisely expressed as

d2u

dx2
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with
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and

c2 ¼ EA
m
; ω2

s ¼
k
m
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We call ωs is the elastic medium natural frequency. For the special
case of the undamped rod embedded in the elastic medium, we set
the damping coefficients ζ1 and ζ1 to zero. With this α2 in Eq. (7)
reduces to

α2 ¼ Ω2�Ω2
s

1�ðe0aÞ2ðΩ2�Ω2
s Þ

ð9Þ

This is a real function of Ω¼ω=c and Ωs ¼ωs=c¼
ffiffiffiffiffiffiffiffiffiffiffi
k=EA

p
. For the

general damped case, α2 is a complex function of the frequency
parameter ω.

Natural frequencies of the system depend on the boundary
conditions. We adopt a general approach by which different
boundary conditions can be considered in an unified manner.

Fig. 1. A single-walled carbon nanotube (SWCNT) embedded in within an elastic
medium with stiffness k. Axial vibration is considered in this study.
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