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H I G H L I G H T S

� Dynamics of zigzag, armchair and
chiral CNTs are studied.

� The governing equations are con-
structed based on the nonlocal
Timoshenko beam theory.

� A significant dependence of natural
frequencies on the chirality of a
single-walled carbon is shown.

� Nonlocal effect on vibration charac-
teristics of chiral CNTs is examined.

G R A P H I C A L A B S T R A C T

The dynamic properties of the single-walled carbon nanotube (SWCNT) with small scale effects are
studied by using the nonlocal elasticity theory.
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a b s t r a c t

In this paper, dynamic properties of a single-walled carbon nanotube (SWCNT) with small scale effects
are studied. Based on the nonlocal continuum theory and the Timoshenko beam model, the equations of
motion are derived. The influences of scale coefficients, the vibrational mode number, the chirality of
carbon nanotube and the aspect ratio on the vibrational characteristics of the SWCNTs are discussed.
Results indicate significant dependence of natural frequencies on the chirality of single-walled carbon,
the small-scale parameter, the vibrational mode number and the aspect ratio. These findings are
important in mechanical design considerations of devices that use carbon nanotubes.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since the discovery of carbon nanotubes by Iijima [1,2],
nanostructures are being increasingly used due to their superior
electronical, thermal and mechanical properties [3,4]. Others
studies have shown that they have good properties so they can

be used for nanoelectronics, nanodevices and nanocomposites
[5,6].

Due to difficulties encountered in experimental methods to
predict the responses of nanostructures under different loading
conditions, the molecular dynamics (MD) simulations are used.
This approach represents the dynamics of atoms or molecules of
the materials by a discrete solution of Newton's classical equations
of motion. But the computational problem here is that the time
steps involved in the MD simulations are limited by the vibration
modes of the atoms [7]. Jin and Yuan [8] used MD and force-
constant approach and reported the Young's modulus of SWCNTs
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to be about 123677 GPa. Cornwell and Wille [9] used the MD
with the Tersoff–Brenner potential [10] to obtain Young's modulus
of SWCNTs of about 0.8 TPa.

The continuum mechanics methods are often used to investi-
gate some physical problems in the nanoscale [11,12]. Recently,
the continuum mechanics approach has been widely and success-
fully used to study the responses of nanostructures, such as the
static [13,14], the buckling [15–18], free vibration [19,20], wave
propagation [21–27] and thermo-mechanical analysis of CNTs [28].
Yakobson et al. [29] utilize a continuum shell model to predict the
buckling of a single-walled carbon nanotube and their results are
compared with molecular dynamics simulations. Harik [30]
reported ranges of applicability for the continuum beam model
in the mechanics of carbon nanotubes and nanorods.

The majority of structural theories are derived using the
constitutive assumptions that the stress at a point depends only
on the strain at the point. On the other hand, nonlocal elasticity
theory, advanced by Eringen [31,32], is based on the hypothesis
that the stress at a point is a function of strains at all points in the
continuum. Peddieson et al. [33], Zhang et al. [34], Wang [35],
Wang et al. [36], Lu et al. [37,38] and Heireche et al. [25–27] have
used the nonlocal elasticity constitutive equations to study vibra-
tion and buckling of CNTs.

In this paper, a nonlocal Timoshenko beam theory is proposed
for the wave propagation in single-walled carbon nanotubes.
Young's modulus of SWCNTs is predicted using MD simulation
carried out by Bao et al. [39]. These results are in good agreement
with the existing experimental results. The characteristic of
transverse wave propagating in CNTs is investigated and the
effects of both small scale parameter and chirality of carbon
nanotube are discussed. The work should be useful in the design
and application of nanoelectronics and nanoelectromechanical
devices

2. Atomic structure of the single-walled carbon nanotube
(SWCNT)

The single-walled carbon nanotube (SWCNT) is theoretically
assumed to be made by rolling a graphene sheet (Fig. 1). The
fundamental structure of carbon nanotubes can be classified into
three categories as zigzag, armchair and chiral in terms of the
chiral vector (Ch

-

) and the chiral angle (θ) shown in (Fig. 1).
The chiral vector can be expressed in terms of base vectors (a1

-
)

and (a2
-
) (Fig. 1) as

Ch

-

¼ma1
-þna2

- ð1Þ

where the integer pair (n, m) are the indices of translation, which
decide the structure around the circumference.

The relationship between the integers (n, m) and the chiral
angle is given by [40]

θ¼ arccos
2nþm

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2þn2þmnÞ

p ð2Þ

According to different chiral angles, SWCNTs can be classified
into zigzag (θ¼01), armchair (θ ¼301) and chiral tubule
(01oθo301) (Fig. 2).

The relationship between the integers (n, m) and the diameter
of SWCNTs is given by [41]

d¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn2þm2þnmÞ

q
=π ð3Þ

where a is the length of the carbon–carbon bond which is 1.42 Å.

3. Nonlocal Timoshenko elastic beam models of SWCNTs

The theory of nonlocal continuum elasticity proposed by
Eringen [31,32] assumed that the stress at a reference point is
considered to be a functional of the strain field at every point in
the body. In the limit when the effects of strains at points other
than x are neglected, one obtains classical or local theory of
elasticity. For homogeneous and isotropic elastic solids, the con-
stitutive equation of non-local elasticity can be given by Eringen
[31,32]. Non-local stress tensor (t) at point (x') is defined by

sij;j ¼ 0

sijðxÞ ¼
Z

Kðjx�x0j; τÞCijklεklðx0ÞdVðx0Þ; 8xAV

εij ¼
1
2
ðui;jþuj;iÞ ð4Þ

where (Cijkl) is the classical, macroscopic stress tensor at point x0,
sij and εij are stress and strain tensors respectively. Kð x�x0j j; τÞ is
the kernel function and τ¼ e0a=l is a material constant that
depends on internal and external characteristic length (such as
the lattice spacing and wavelength), where e0 is a constant
appropriate to each material, a is an internal characteristic length,
e.g., length of the C–C bond, lattice parameter, granular distance,
and l is an external characteristic length.

Non-local constitutive relations for present nanobeams can be
approximated to a one-dimensional form as

1�e0a2
∂2

∂x2

� �
sx ¼ Eεx ð5Þ

1�e0a2
∂2

∂x2

� �
τxz ¼ Gγxz ð6Þ

Fig. 1. Schematic diagram of the chiral vector and the chiral angle.

Fig. 2. Carbon nanotube: armchair, zigzag and chiral.
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