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a b s t r a c t

We have analytically studied bound states of the one-dimensional Dirac equation for scalar and vector
double square-well potentials (DSPs), by using the transfer-matrix method. Detailed numerical calcula-
tions of the eigenvalue, wave function and density probability have been performed for the three cases:
(1) vector DSP only, (2) scalar DSP only, and (3) scalar and vector DSPs with equal magnitudes. We
discuss the difference and similarity among results of the cases (1)–(3) in the Dirac equation and that in
the Schrödinger equation. Motion of a wave packet is calculated for a study on quantum tunneling
through the central barrier in the DSP.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The basic physics of relativistic quantum mechanics was formu-
lated in the Dirac equation, which elucidates the origin of spin 1/2 of
an electron and predicts the existence of an antiparticle (a positron)
[1]. The Dirac equation has been applied not only to realistic models
like hydrogen atom but also to pedagogical models which play
important roles in understanding the properties of the Dirac equa-
tion. The Dirac equation for step and square potentials has been
investigated in connection to the Klein paradox [2–6]. Square-well
potentials with finite and infinite depths have been studied in Refs.
[7–12]. The double square-well potential (DSP) consisting of the
confining potential and the central potential is more difficult than the
single square-well potential [7–12]. Indeed trustworthy applications
of the Dirac equation to the DSP have not been reported as far as we
are aware of Ref. [13]. The DSP is a simplified model for an
appropriate and realistic description of a continuous double-well
potential. Extensive investigations within the nonrelativistic treat-
ment of the Schrödinger equation have been made for double-well
systems where numerous quantum phenomena have been realized
(for a recent review on double-well systems, see Ref. [14]). The
Schrödinger equation for the DSP with the infinite confining poten-
tial is manageable and treated in the undergraduate text, whereas
the DSP with the finite confining potential has been investigated only
in several studies [15–17]. One of the advantages of the DSP is to
provide us with exact analytic expressions for eigenstates and wave
functions. In the relativistic quantum theory, a combination of two
types of scalar (S(x)) and vector (V(x)) potentials has been adopted. In

previous studies on the single square-well potential, the vector
potential was adopted in Refs. [7–9,11,12] while the scalar potential
was employed in Refs. [9,10]. The purpose of this paper is to make a
detailed study on the Dirac equation for scalar and vector DSPs and
to make a comparison between results of the Dirac equation and the
Schrödinger equation. Such a study is fundamental and inevitable for
a deeper understanding of relativistic quantum double-well systems.

The paper is organized as follows. In Section 2, we obtain analytic,
exact expressions for eigenvalues and wave functions of bound states
in the Dirac equation for scalar and vector DSPs, by using the
transfer-matrix method. In Section 3, the transcendental complex
equation for the eigenvalue is numerically solved and bound-state
wave functions are obtained for three cases: (1) the vector DSP only
(VDSP: SðxÞ ¼ 0), (2) the scalar DSP only (SDSP: VðxÞ ¼ 0), and
(3) equal scalar and vector DSPs (EDSP: SðxÞ ¼ VðxÞ). In Section 4, a
comparison is made among eigenvalues of the three cases (1)–(3) in
the Dirac equation and that in the Schrödinger equation. Motion of a
wave packet is investigated for a study on the quantum tunneling
through the central barrier in the DSP. Section 5 is devoted to our
conclusion. In the Appendix the transfer-matrix method is applied to
the Schrödinger equation for the DSP.

2. Dirac equation for the double square-well potential

2.1. Transfer-matrix formulation

The one-dimensional Dirac equation is given by

iℏ
∂
∂t
Ψ ðx; tÞ ¼HΨ ðx; tÞ; ð1Þ

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physe

Physica E

1386-9477/$ - see front matter & 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physe.2014.01.011

n Corresponding author.
E-mail address: hideohasegawa@goo.jp

Physica E 59 (2014) 192–201

www.sciencedirect.com/science/journal/13869477
www.elsevier.com/locate/physe
http://dx.doi.org/10.1016/j.physe.2014.01.011
http://dx.doi.org/10.1016/j.physe.2014.01.011
http://dx.doi.org/10.1016/j.physe.2014.01.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2014.01.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2014.01.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2014.01.011&domain=pdf
mailto:hideohasegawa@goo.jp
http://dx.doi.org/10.1016/j.physe.2014.01.011


with

H ¼ cα̂ � pþ β̂mc2þUðxÞ; ð2Þ

where Ψ ðx; tÞ expresses the wave-vector spinor, α̂ and β̂ are the
Dirac matrices, p ð ¼ � iℏ∂=∂xÞ denotes the momentum operator, m
is the rest mass of a particle, c is the light velocity, and the
potential U(x) is assumed to be given by

UðxÞ ¼ β̂SðxÞþVðxÞ; ð3Þ

S(x) and V(x) expressing scalar and vector potentials, respectively.
Assuming the stationary solution Ψ ðx; tÞ ¼Ψ ðxÞexpð� iEt=ℏÞ, we
obtain the steady-state Dirac equation HΨ ðxÞ ¼ EΨ with the
energy E. Among conceivable, equivalent expressions for the Dirac
equation, we adopt the Dirac matrices given by

α̂ ¼sx ¼
0 1
1 0

� �
; β̂ ¼ sz ¼

1 0
0 �1

� �
; ð4Þ

leading to

csx � iℏ
∂
∂x

� �
þsz½mc2þSðxÞ�

� �
Ψ ðxÞ ¼ ½E�VðxÞ�Ψ ðxÞ; ð5Þ

with

Ψ ðxÞ ¼
ψ þ ðxÞ
ψ � ðxÞ

 !
: ð6Þ

Two components of two-dimensional spinor of Ψ ðxÞ, ψ þ ðxÞ and
ψ � ðxÞ, satisfy

½mc2þV ðxÞþSðxÞ�ψ þ ðxÞ� iℏc
d
dx
ψ � ðxÞ ¼ Eψ þ ðxÞ; ð7Þ

� iℏc
d
dx
ψ þ ðxÞþ½�mc2þVðxÞ�SðxÞ�ψ � ðxÞ ¼ Eψ � ðxÞ: ð8Þ

We consider the one-dimensional vector potential V(x)
expressed by

VðxÞ ¼

Vb for xr�b ðregion IÞ;
0 for �boxr�a ðregion IIÞ;
Va for �aoxra ðregion IIIÞ;
0 for aoxrb ðregion IVÞ;
Vb for x4b ðregion VÞ;

8>>>>>><
>>>>>>:

ð9Þ

with VbZ0 and 0rVarVb. Here the x-axis is divided into five
spatial regions: (I) xr�b, (II) �brxr�a, (III) �aoxra, (IV)
aoxrb, and (V) x4b; Vb expresses the confining potential in the
regions I and V; Va denotes central barrier potential in the region
III (Fig. 1).

As for the scalar potential S(x), we consider

SðxÞ ¼

Sb for xr�b ðregion IÞ;
0 for �boxr�a ðregion IIÞ;
Sa for �aoxra ðregion IIIÞ;
0 for aoxrb ðregion IVÞ;
Sb for x4b ðregion VÞ;

8>>>>>><
>>>>>>:

ð10Þ

with SbZ0 and 0rSarSb (read Va-Sa and Vb-Sb in Fig. 1). The
adopted scalar and vector DSPs are symmetric with respect to the
origin. In the limit of Va ¼ Sa ¼ 0, a¼0, or a¼b, the double square-
well potential reduces to the single one.

Wave functions in five regions I–V may be expressed by

Ψ IðxÞ ¼ A1
1
β

 !
eiqxþB1

1
�β

 !
e� iqx for xo�b; ð11Þ

Ψ IIðxÞ ¼ A2
1
α

� �
eikxþB2

1
�α

� �
e� ikx for �boxo�a; ð12Þ

Ψ IIIðxÞ ¼ A3
1
γ

 !
eipxþB3

1
�γ

 !
e� ipx for �aoxoa; ð13Þ

Ψ IV ðxÞ ¼ A4
1
α

� �
eikxþB4

1
�α

� �
e� ikx for aoxob; ð14Þ

Ψ V ðxÞ ¼ A5
1
β

 !
eiqxþB5

1
�β

 !
e� iqx for xo�a; ð15Þ

with

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2�m2c4

p
ℏc

; ð16Þ

p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþmc2�VaþSaÞðE�mc2�Va�SaÞ

p
ℏc

; ð17Þ

q¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþmc2�VbþSbÞðE�mc2�Vb�SbÞ

p
ℏc

; ð18Þ

α¼ ℏck
Eþmc2

; ð19Þ

β¼ ℏcq
Eþmc2�VbþSb

; ð20Þ

γ ¼ ℏcp
Eþmc2�VaþSa

; ð21Þ

where
ffiffiffi
z

p
signifies the square root of a complex z: for a real z,ffiffiffi

z
p ¼ z1=2ΘðzÞþ ið�zÞ1=2Θð�zÞ with the Heaviside function ΘðzÞ.

Matching conditions of wave functions at boundaries at x¼ 7b
and x¼ 7a yield

e� iqb eiqb

βe� iqb �βeiqb

 !
A1

B1

 !
¼ e� ikb eikb

αe� ikb �αeikb

 !
A2

B2

 !
; ð22Þ

e� ika eika

αe� ika �αeika

 !
A2

B2

 !
¼ e� ipa eipa

γe� ipa �γeipa

 !
A3

B3

 !
; ð23Þ

eipa e� ipa

γeipa �γe� ipa

 !
A3

B3

 !
¼ eika e� ika

αeika �αe� ika

 !
A4

B4

 !
; ð24Þ

eikb e� ikb

αeikb �αe� ikb

 !
A4

B4

 !
¼ eiqb e� iqb

βeipb �βe� ipb

 !
A5

B5

 !
: ð25Þ

Fig. 1. Schematic vector DSP, V(x), given by Eq. (9) (bold solid lines), the x-axis
being divided into five regions I–V separated by dashed lines. The scalar DSP, S(x), is
given if we read Va-Sa and Vb-Sb .
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