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H I G H L I G H T S

� Mean age theory was extended here to multiphase systems.
� Computational results were well validated against experimental results.
� This technique is applicable to any combination of phases.
� This technique is applicable to advective and diffusive processes.
� Key novelty is for multiphase applications with very long residence times or ages.
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a b s t r a c t

Conventional residence time distributions reveal system mixing and dispersion characteristics but are
limited to discrete sampling locations, typically at the exit. Mean age theory extends the usefulness of the
concept by providing spatial distributions of the mean age of material inside a system using an inno-
vative steady-state approach that incorporates time as a passive scalar, but has been limited to single
phase systems. Mean age theory was extended here to multiphase systems by defining the scalar tracer
concentration independently for individual phases, which allows mean age to be solved at steady-state
for each phase independently within a multiphase system. The theory was well validated by comparing
residence time distributions extracted from spatial mean age distributions determined computationally
at two locations where RTDs were experimentally measured in a water–oil flow system. Mean residence
times from MMA theory were within 1–3% of experimental values and variances were within 3–11%.
Means and variances derived from MMA theory matched experimental values more closely than did
values derived from the conventional transient solutions, indicating better accuracy due to the steady-
state solution. This technique is widely applicable to multiphase systems of any phase type (liquids,
solids, and gases), and since it can be solved at steady-state, is advantageous for applications with
extraordinary long residence times or ages.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Residence-time distributions (RTD) are a key indicator of
degree of mixing in continuous processes. The concept of resi-
dence time typically refers to material exiting the system, but in
some cases local residence times are described within a system.
The concept of age typically only refers to materials inside the
system and can provide additional information regarding internal
distribution above and beyond just the typical RTD's. Complete
spatial distributions of mean age provide the most value, but are
generally impractical to develop experimentally since sampling

and measurement is required across an entire system volume.
Measuring residence times (or age) require tracking the move-
ment of a passive tracer, such as through the use of a flammable
gas in air (Baleo and Cloirec, 2000), radioactive isotope (Sinusas
et al., 2014) or an appropriately defined chemical reaction (Liu and
Tilton, 2010).

A highly innovative approach to mixing research in recent years
has been towards application of mean age theory (Baleo and
Cloirec, 2000; Liu and Tilton, 2010), which was originally proposed
by Danckwerts (1958), although in 1958 the lack of computing
power made the proposition purely theoretical and not practical.
Mean age theory allows for redefining time as a passive scalar
variable in the advection-diffusion equation, which then allows for
analysis of traditionally time based variables, such as mean resi-
dence time or mixing time (Liu, 2011), while using a steady-state
solution. Conventional solutions to the advection-diffusion
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equation required a time-demanding, computationally intensive
transient solution, particularly when additional complications
were introduced such as multiple phases, non-Newtonian flow,
and turbulence. Even when a solution at steady-state is desired,
the transient calculation is still necessary for modeling the time
dependent tracer behavior. Computational fluid dynamic (CFD)
solutions of mean age are additionally beneficial since (i)they can
provide spatial and temporal resolution within the flow field, (ii)
provide insight above conventional velocity vector and contour
plots, and (iii) provide solutions when traditional experimental
measurements are difficult or not possible (Sarkar et al., 2014).

Mean age theory, in its current form, is only applicable to
single-phase systems. A new technique applicable to multiphase
systems would extend the usefulness to a larger, and arguably
more important, classification of processes. The steady-state form
of the advection-diffusion equation is not limiting in terms of the
magnitude of age, or residence time, and therefore allows for
solutions of extraordinarily long time-scale applications, on the
order of days, months, and years, that are currently impractical,
and improve the computational efficiency for others.

Example applications that would benefit include pollution
modeling (Samano et al., 2014), fluidized beds (Patil et al., 2003),
sedimentation in surface water (Wang et al., 2013), and cardio-
vascular applications (Tambasco and Steinman, 2002).

The primary objectives here were to develop a theoretical
definition for steady-state mean age of individual phases in mul-
tiphase systems, termed multiphase mean age (MMA) theory, and
then validate the steady-state solution by comparing results
against both experimental data and to the conventional transient
solution. In the absence of comprehensive experimental spatial
mean age distribution data throughout an entire system volume
for multiple phases, a continuous oil/water flow system was cho-
sen where RTDs were available at two points along the flow to use
for validation (Sugiharto et al., 2009). RTDs were extracted as a
subset of the spatial mean age contours determined from the
model for each phase at both points of experimental measure-
ment. Additionally, a simple liquid–solid (water–sand) system was
simulated to demonstrate viability of MMA theory for different
phase types.

2. Theory

Mean age theory as a means of modeling the time dependent
behavior of a passive scalar in a steady-state CFD simulation has
been derived elsewhere for a single phase system (Liu and Tilton,
2010; Sandberg, 1981; Spalding, 1958). The theory is extended
here for application to multiphase systems. Liu and Tilton, (2010)
begin with the assumption that C(x,t) is the concentration of the
scalar tracer at a given location x and time t, without further
definition. It is reasonable to assume that their C(x,t) could be
defined as:

C x; tð Þ ¼ ρUϕ x; tð Þ ð1Þ
where ρ is the density of the single phase and ϕ(x,t) is the scalar
value at a given location x and time t. The concentration of a
passive scalar confined to a single phase in a multiphase system
can then be defined:

C x; tð Þ ¼ ρU α x; tð ÞUϕ x; tð Þ ð2Þ
where α(x,t) is the individual phase volume fraction at a local
position and time and ρ is the density of the individual phase.
With this definition of scalar concentration for multiphase sys-
tems, the rest of the derivation proceeds analogously to that for a
single phase system (followingLiu and Tilton (2010)).

Mean residence time for either definition of C can be defined
as:

t ¼
R1
0 tCoutdtR1
0 Coutdt

ð3Þ

and can then be generalized to any point in the system by defining
‘mean age’ as:

a xð Þ ¼
R1
0 tC x; tð ÞdtR1
0 C x; tð Þdt ð4Þ

This can be solved for any given point in the system. To do so,
one must begin with the transient passive scalar advection-
diffusion transport equation:

∂C
∂t

þ∇U uCð Þ ¼∇U D∇Cð Þ ð5Þ

Eq. (12) and the derivation that follows are applicable to
laminar flow systems. In a turbulent system, Eq. (12) can be
replaced with the Reynolds averaging equation, provided the time
scale associated with turbulence is much smaller than the mean
residence time. In that case, D becomes the effective turbulent
diffusivity and the rest of the derivation transfers directly (Liu and
Tilton, 2010). Multiplying both sides by time t and integrating
yields:Z 1

0
t
∂C
∂t
dtþ

Z 1

0
∇U tuCð Þdt ¼

Z 1

0
∇UD∇ tCð Þdt ð6Þ

The first term on the left can be integrated by parts to give:Z 1

0
t
∂C
∂t
dt ¼ tC j10 �

Z 1

0
Cdt ð7Þ

Since for a pulse input in an open system it is known that:

lim
t-1

tc¼ 0 ð8Þ

it can be inferred that:Z 1

0
t
∂C
∂t
dt ¼ �

Z 1

0
Cdt ð9Þ

Taking Eq. (9) and substituting it back into Eq. (6) gives:

�1þ∇U u

R1
0 tCdtR1
0 Cdt

" #( )
¼∇U Du

R1
0 tCdtR1
0 Cdt

" #( )
ð10Þ

Finally, substituting in Eq. (4) generates the age transport
equation:

∇U uað Þ ¼∇UD∇aþ1 ð11Þ
which can be expressed for incompressible systems as:

u∇a¼∇UD∇aþ1 ð12Þ
Both definitions of C produce the same transport equation, so

the theory is now valid for both multiphase and single-phase
systems.

Boundary conditions for Eq. (12) have been derived elsewhere
(Liu and Tilton, 2010; Danckwerts, 1953) and are given as:

a¼ 0 Inlet ð13Þ

∂a
∂xn

¼ 0 Outlet ð14Þ

∂a
∂xn

¼ 0 Wall ð15Þ

where Xn is the normal direction. The outlet boundary condition
has very little influence on the final result except when the Peclet
number is very small (Froment and Bischoff, 1979). Additionally,
strictly speaking the inlet should be a single inlet which is uniform
in regards to inlet velocity and age.
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