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� Theoretical calculation of density of states of boron nitride monolayer in the context of Holstein model.
� The investigation of density of states versus electron–electron interaction.
� The investigation of optical conductivity versus photon energy.
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a b s t r a c t

We analyze the effects of on-site electronic coulomb repulsion U on the optical absorption and density of
states of a graphene like structure with two different sublattice on-site energies in the context of
Hubbard model. Mean field approximation has been implemented in order to find excitation spectrum of
electronic system. Antiferromagnetic long range ordering has been considered as the ground state of
model Hamiltonian. We find that the band gap in both optical conductivity and density of states
decreases with strength of coulombic interaction. The absorption spectra of the graphene like structure
as a nanoscale system exhibit the prominent peaks, mainly owing to the divergent density of states and
excitonic effects.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The interest in strongly correlated frustrated lattices has
increased recently because of the possible realization of exotic
magnetic states [1], spin and charge separation in two dimensions
[2], and the discovery of superconductivity [3]. The honeycomb
lattice, which is made of two interpenetrating triangular lattices,
has been shown to stage many different types of exotic physical
behaviors in magnetism and the growing experimental evidence
of non-Fermi liquid behavior in graphene like structure has led to
the study of electron–electron correlations and quasiparticle life-
times in graphite [4]. Graphene [12] is a semimetal with a linear
crossing of the π and πn bands at the K-point of the Brillouin zone.
Among these nanoscale systems that present interesting optoelec-
tronic properties, one can point to the systems with electronic
energy gap. The role of coulomb interactions in graphene and
related materials can be expected to be a significant factor in

appearance of magnetic ordering [5,6]. From the theoretical side,
an antiferromagnetic insulating ground state has been obtained
for the local coulomb interactions exceeding a critical values
UAF 4 ð4:570:5Þt within quantum Monte Carlo calculations [7]
and UAF4 ð2:2Þt in Hartree–Fock theory [8] where t is the nearest
neighbor hopping parameter. In other hands, the electronic
spectrum of tight binding model Hamiltonian on the honeycomb
lattice can be modified via many perturbations [9]. From applica-
tions point of view, it is important to open up a gap in the
spectrum by lowering the symmetry of the nearest neighbor tight
binding Hamiltonian. For example the substrate can induce a sub-
lattice symmetry breaking, e.g. by considering an difference
between two on-site energy sublattices. This difference leads to
a charge gap in the spectrum of single-particle excitations. Also
ab-initio estimates of the strength of the Hubbard U in graphene
suggest that the on-site coulomb repulsion is quite remarkable,
� 10 eV [10]. Therefore it is important to consider both the single
particle gap parameter and the Hubbard parameter U on the
electronic and optical properties of graphene like structure.
Dynamical mean field approach has been employed to study
the effect of on-site electron correlation on the gapped graphene
structure[11]. For a fixed gap parameter, the charge gap in the
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spectrum closes beyond a critical value Uc1. Further increasing U
beyond Uc2, another phase transition to the Mott insulating state
takes place. In the other theoretical work, the magnetic phases of
the Hubbard model on the honeycomb lattice have been studied
[22]. The critical lines associated with instabilities of the para-
magnetic phase are obtained in the interaction and particle
density plane. The optical properties of related materials to the
graphene structure such as hexagonal boron nitride (BN) mono-
layer have been investigated experimentally [13] and theoretically
within random phase approximation (RPA) [14]. Moreover, BN
monolayer has regained interest due to the discovery of
BN-nanotubes [15,16] which can be constructed by rolling a single
layer of BN onto itself. The RPA optical absorption spectra for two
dimensional single sheet are very similar to that for the quasi one
dimensional tubes [17]. This result has been obtained for light
polarization parallel to the layer plane and tube axis. Also optical
absorption of BN ribbons and nanotubes has been discussed
within gradient approximation of tight binding model [18].
It has been shown that the number of absorption peaks and the
excitation energies strongly depend on the geometry structure.
GW approximation and Bethe–Salpeter calculations as many
quantum particle approaches has been implemented in order to
explain the nature of the electronic energy gap and optical
absorption spectrum of carbon BN monolayers [19]. An efficient
implementation of the Bethe–Salpeter equation in the projector
augmented wave method GAPW for optical properties of hexago-
nal BN has been applied [20]. In this work, the effect of intersite
coulombic repulsion between electrons on the band gap and
optical absorption spectra for electrons on the honeycomb lattice
is studied in a pure theoretical frame. In order to study problem
generally, a difference between on-site energy for two different
sublattice sites has been considered. Mean field approximation has
been implemented to obtain electronic excitation spectrum at low
values for local coulomb interaction (U). The sublattice antiferro-
magnetic long range ordering is considered as the ground state of
model Hamiltonian. We find that the increase of local Hubbard
interaction between electrons leads to decrease of the width of
optical and band gaps of the structure. The height of the peaks in
optical spectrum decreases with Hubbard coulomb interaction
parameter. On the other hand, the existence of two peaks in the
optical spectrum structure is of novel properties of our results.
Based on the quantum many particle methods, theses two peaks of
optical spectrum are related to the excitonic effects [13].

2. Model Hamiltonian and density of states

In order to find the electronic properties of the honeycomb
lattice due to coulombic repulsion between electrons, we consider
Hubbard model to describe the dynamics of tight binding elec-
trons on a bipartite lattice (sublattices A, B) as

H ¼ ðϵ0A�μÞ∑
i;s
a†i;sai;sþðϵ0B�μÞ∑

i;s
b†i;sbi;s�t∑

i;j;s
ða†i;sbj;sþh:c:Þ

þU∑
i
a†i;↑ai;↑a

†
i;↓ai;↓þU∑

i
b†i;↑bi;↑b

†
i;↓bi;↓; ð1Þ

where ai;sðbi;sÞ implies the annihilation operator of electrons with
s at ith unit cell at the sublattice sites A(B). Also a†ðb†Þ denotes
the corresponding creation operators. Furthermore ϵ0A, ϵ0B are the
on-site energies of two different sublattice atoms. U and t are the
Hubbard repulsion and the nearest neighbor hopping integral,
respectively. The chemical potential is chosen to be μ¼ U=2, so
that the average occupancy is (〈nA〉þ 〈nB〉=2¼ 1). Fig. 1 shows the
crystal structure of honeycomb lattice with two different sublat-
tices. According to Fig. 1, the primitive unit cell vectors of

honeycomb lattice are given by

a1 ¼ ai; a2 ¼ a=2ð�iþ
ffiffiffi
3

p
jÞ; ð2Þ

where a� 1:42 Å is the length of unit cell vector and is considered
to be one. Moreover a01, a02 and a03 are the bonding lengths of
two nearest neighbor atoms. In an antiferromagnetic long range
ordering as a broken state, we describe the average lattice
site occupation as 〈ni;s〉¼ ðn7msÞ=2, where the positive sign is
regarded to sublattice A and negative one is related to sublattice B.
Also n denotes the electron density and m is the staggered
magnetization and s¼ 71. The Fourier transformation of field
operators for each sublattice is defined by

ai;s ¼
1ffiffiffiffi
N

p ∑
k
eik:Ri ak;s; bi;s ¼

1ffiffiffiffi
N

p ∑
k
eik:Ri bk;s; ð3Þ

where N denotes the number of unit cells. Using mean field
approximation or Hartree–Fock approach, two particle parts of
model Hamiltonian are transformed as one particle operator. After
replacing the Fourier transformation of each operator into Eq. (1)
and implementing mean field theory, the final result for Hubbard
model Hamiltonian is given by [22]

H¼ ∑
k;s

ðαk;sa
†
k;sak;sþβk;sb

†
k;sbk;sþϕðkÞa†k;sbk;sþϕnðkÞa†k;sbk;sÞ; ð4Þ

with coefficients given by

αk;s ¼ ϵ0A�μþU
n�sm

2
; βk;s ¼ ϵ0B�μþU

nþsm
2

ϕðkÞ ¼ 1þ cos ðkx=2Þexpð�iky
ffiffiffi
3

p
=2Þ: ð5Þ

Diagonalization of the model Hamiltonian introduced in Eq. (5)
leads to the band spectrums for electrons with spin s as

En ¼ �ðþÞ;s kð Þ ¼Unþϵ0Bþϵ0A�2μ
2

� þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mUsþϵ0A�ϵ0B

2

� �2

þjϕ kð Þj2
s

: ð6Þ

Also band wave functions for each spin s are obtained by

ψs
n;k rð Þ ¼ 1ffiffiffiffi

N
p ∑

R;α ¼ A;B
eik:RCsn;α kð Þϕα r�Rð Þ; ð7Þ

where ϕα implies Wannier wave function of electron for the atom
in the unit cell with position R and for sublattice α¼ A;B. The
expansion coefficients Csn;α are given by

Csþð�Þ;A ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðζsþð�ÞÞ2
q ; Csþð�Þ;B ¼

ζsþð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðζsþð�ÞÞ2

q

ζsþð�Þ ¼
�ϕn

k

Ums�ϵ0Bþϵ0N
2

� þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mUsþϵ0N�ϵ0B

2

� �2

þjϕkj2
s : ð8Þ

The density of states for honeycomb lattice due to magnetic long
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Fig. 1. The honeycomb lattice structure with two sublattices, A, B. The light dashed
lines denote the Bravais lattice unit cell. Each cell includes two nonequivalent sites,
which are indicated by A and B. a1 and a2 are the primitive vectors of unit cell. a01,
a02 and a03 are three vectors that connect nearest neighbor sites.
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