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H I G H L I G H T S

� The conductance oscillates with a
period of two atoms as the number
of atoms in the silicon atomic chain
is varied.

� The transport channel is mainly con-
tributed by px and py orbital elec-
trons of silicon atoms.

� The even–odd oscillation is robust
under external voltage up to 1.2 V.

G R A P H I C A L A B S T R A C T

Linear silicon atomic chains with n¼1–8 atoms sandwiched between Au electrodes. The conductance
oscillates with a period of two atoms as the number of atoms in the chain is varied. The even–odd
oscillation is robust under external voltage up to 1.2 V.
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a b s t r a c t

The conductance of linear silicon atomic chains with n¼1–8 atoms sandwiched between Au electrodes is
investigated by using the density functional theory combined with non-equilibrium Green's function.
The results show that the conductance oscillates with a period of two atoms as the number of atoms in
the chain is varied. We optimize the geometric structure of nanoscale junctions in different distances,
and obtain that the average bond-length of silicon atoms in each chain at equilibrium positions is
2.1570.03 Å. The oscillation of average Si–Si bond-length can explain the conductance oscillation from
the geometric structure of atomic chains. We calculate the transmission spectrum of the chains in the
equilibrium positions, and explain the conductance oscillation from the electronic structure. The
transport channel is mainly contributed by px and py orbital electrons of silicon atoms. The even–odd
oscillation is robust under external voltage up to 1.2 V.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

With the progress in micro-fabrications and self-assembly
techniques, it is possible to synthesize and manipulate the
ultimately thin wires made of single atomic chains [1]. Low
dimensional form of materials can have properties quite different
from those of their bulk structures [2]. Monatomic chain, being the
simplest object to be connected into a circuit, can be considered as

the ultimate limit in the miniaturization of electronics. Thus, the
investigation of atomic chains in experiments and theories
become one of the center topics in nano-materials science [3].

Quantized conductance has been observed at room tempera-
ture for a number of tip-substrate systems by a scanning tunneling
microscope [4]. Transport properties of atomic contacts have been
investigated in experiments and theoretical calculations for many
years [5]. Lang first studied the dependence of the conductance on
the number of Na atoms in the wire, and found that the
conductance of a chain of Na atoms between electrodes oscillates
with a period of two atoms as the length of the chain is varied [6].
This oscillation effect was also found in Au, Pt, Ir, and Al atomic

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physe

Physica E

1386-9477/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physe.2013.08.029

n Corresponding author. Tel./fax:þ86 28 85405516.
E-mail address: ycheng@scu.edu.cn (Y. Cheng).

Physica E 56 (2014) 96–101

www.sciencedirect.com/science/journal/13869477
www.elsevier.com/locate/physe
http://dx.doi.org/10.1016/j.physe.2013.08.029
http://dx.doi.org/10.1016/j.physe.2013.08.029
http://dx.doi.org/10.1016/j.physe.2013.08.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2013.08.029&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2013.08.029&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2013.08.029&domain=pdf
mailto:ycheng@scu.edu.cn
http://dx.doi.org/10.1016/j.physe.2013.08.029


chains [7–11]. Apart from chains of metal atoms, the chains of
semiconductor or insulator atoms have also been investigated. The
conductance of monatomic chains of C, Si, S, Ge, and Sn elements,
and of binary compounds such as InP, GaAs, AlSb, BN, SiC, GaN, and
AlN have been reported [12–14].

Silicon is of paramount importance in the microelectronics
industry. Small silicon clusters have been a subject of intensive
studies. Roland et al. investigated the transport behavior of small
Sin (n¼1–10, 13, 20) nano-clusters between atomistic Al and Au
leads, and found that all of the clusters display metallic I–V
characteristics [15]. Landman et al. studied the conductance of
silicon nanowires connected to aluminum electrodes, and found
that the short wires are fully metalized [16]. Senger et al. also
studied the structural, electronic, and transport properties of
atomic chains of silicon. Their calculations revealed that the
monatomic chains of silicon are stable and metallic [17]. Although
it is possible to measure conductance of atomic chains in
mechanically controlled break junction experiments, the detailed
structure of chains remain unknown in the measurements. So it is
very valuable to simulate the transport properties from first-
principles calculations. In this paper, in order to systematically
understand the transport properties of silicon atomic chains, based
on our previous research [18], we have interest in examining the
conductance of silicon chains attached to Au leads using the
density functional theory combined with the non-equilibrium
Green's function method.

2. Theoretical mode and calculation details

Fig. 1 depicts the physics model which is comprised of silicon
chains with different number atoms coupling with two semi-
infinite Au (1 0 0) metal electrodes. The device system is divided
into three regions: left and right electrodes, and a central extended
molecule (scattering region), which includes some electrode
atomic layers respectively at each side of the junction to screen
the perturbation effect. The left and the right electrodes are
considered perfect crystals. The unit cell of the extended molecule
comprises 127 Au atoms of 13 (1 0 0)-oriented Au atomic lays in a
(3�3) super cell and n (from 1 to 8) silicon atoms in the short
chains. The potential is well approximated by that of a perfect bulk
electrode. The transport properties have been calculated with the
ab initio transport code SMEAGOL [19,20], which calculates the
density matrix and the transmission coefficients of a two-probe
device using the non-equilibrium Green's function formalism. The
scattering potential is calculated self-consistently by using the
SIESTA implementation of the density functional theory [21].

In our calculations, we use the Perdew–Zunger [22] version of
the local density approximation to the exchange-correlation func-
tional. Valence electron configuration is 5d106s1 for Au atoms and
3s23p2 for Si atoms, and they are expanded in single-zeta basis sets
for Au atoms and double-zeta basis sets for Si atoms. Troullier–
Martins [23] pseudo-potential in nonlocal form is generated.
A periodic boundary condition is applied in the basal plane
(orthogonal to the transport direction) with four irreducible
k-points in the two-dimensional Brillouin zone. A k-grid sampling
of 2�2�100 for the gold electrodes is employed. The cut-off
energy and iterated convergence criterion for total energy are set

to 200 Rydberg and 10�4, respectively. Furthermore, the charge
density is integrated over 50 energy points along the semi-circle,
20 energy points along the line in the complex plane and 20 poles
are used for the Fermi distribution.

The conductance (G) associated to the two-probe device can be
calculated by using the Fisher–Lee's relation G¼ 2e2=h
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M� [24], where the ΓL=R is the anti-hermitian parts

of the self energy, e is the electron charge and h is the Planck
constant. GR

M , which contains all the information about the
electronic structure of the extended molecule, is the retarded
Green's function of the scattering region. Then the two-terminal
current can be calculated through the formula: I¼ 2e=h
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distribution function of the two electrodes, and μL=R is the
chemical potential for the left/right electrode. More calculation
details on how this procedure is performed in SMEAGOL can be
found in the literature [19,20].

3. Results and discussion

The parameters of Au electrodes and slicon atomic chain
structures are taken from the experimental data. Due to the
interactions between electrodes with atomic chains, the junctions
structure will be changed. We perform geometry relaxation by
keeping all atoms in the bulk of Au electrodes fixed and relaxing
the apexes of the point contact until the force on each atom is
small than 0.1 eV/Å in the optimization [26]. The distance between
the outer slices (not relaxation) was defined as dz. In order to
calculate the most stable structure for each chain attached to leads
in different distances, we calculate the cohesion energy as a
function of dz during the simulation process. The cohesion energy
is defined as follows: E¼E (Au electrodesþsilicon chain)�
E (silicon chain)�E (Au electrodes). The calculated results are
shown in Fig. 2 (marked in solid squares and right-hand side axis).
It is found that there is a parabola in the curve of the total energy
as a function of dz for each chain. The minimum energy in every
curve is located at the equilibrium distances.

The distances dz,eq corresponding to those energy minima
describe the equilibrium position, where the system will natu-
rally form if the electrodes are free to relax. For more details,
when the number of atoms in silicon chains increase from 1 to 8,
the equilibrium distances is dz,eq¼12.16 Å, 14.01 Å, 15.84 Å,
18.10 Å, 20.74 Å, 22.19 Å, 24.84 Å, and 26.68 Å, respectively. We
investigate the Si–Si bond-length in the silicon atomic chains and
Si–Au bond-length in point contact at the equilibrium position.
Each specific bond-length of silicon chains at equilibrium posi-
tion is listed in Table 1. When the junctions are in the equilibrium
positions, the Si–Si bond-length, rSi–Si, is 2.1570.03 Å, the Si–Au
bond-length rSi–Au, in the junction contact is 2.2970.02 Å for
each chain. We find that the average Si–Si bond-length oscillates
as the number of atoms in the chain is increases. When the
number of atoms is even, the average bond length is smaller than
that of odd.

We calculate the conductance as a function of distance dz after
geometry relaxation, i.e. we simulate a slow junction breaking
process. The details of conductance that varied with the distance
for all chains are shown in Fig. 2. The conductance marked in open
squares and left-hand side axis. It is easy to see that the change of
conductance with distance is different for each silicon atomic
chain, and the conductance is not necessarily the biggest at most
stable stations. In general, the distance is an important factor to
the conductance, the small change of the distance will lead to a big
change of conductance for all chains. So, the conductance is
sensitive to the distances as the junction is stretched. Furthermore,
all silicon atomic chains have shown good conductance in their

Fig. 1. Model used for the calculation of the different silicon chains connecting
(1 0 0) oriented fcc Au leads.
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