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H I G H L I G H T S

� One-dimensional model of a quantum ring with an arbitrary contour is formulated.
� Analytical solutions are found for three rings with different orders of symmetry.
� The structure of the energy gaps is shown to be dependent on the order of symmetry.
� Asymmetry of a quantum ring causes some chaos in widths of the energy gaps.
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a b s t r a c t

The energy states and persistent current oscillations considered here are formulated in a one-
dimensional model for a quantum ring with a nearly circular arbitrary contour. Using conformal
mapping, the curvature of the ring is introduced into the Schrodinger equation via the Lamé coefficient
of the conformal mapping. Asymptotic methods were employed in order to derive analytical solutions.
Energy levels and current oscillations were studied for three cases of the possible non-circular QR
symmetries: a QR with two axes of symmetry (ellipse), a QR with one axis of symmetry and also on QRs
with no axes of symmetry, i.e. asymmetric shapes. We obtain explicit expressions for the periodic energy
and the energy gaps opened at the half-integer and integer values of the flux. The spectrum behavior is
found to be dependent on the order of symmetry. In particular, small asymmetries of the QR cause some
perceptible chaos in the width of the gaps.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The properties of quantum rings (QRs) in external magnetic
fields, together with their potential applications in quantum
information processing and low-dimensional semiconductor
optoelectronic devices, place these systems among the topics
attracting attention of researchers [1–6]. The electronic properties
of QRs are not only of fundamental interest, but are also important
due to their potential applications. The increasing development of
advanced epitaxial growth techniques makes it possible to form
various novel-shaped quantum rings [7–11].

Although electronic properties of perfect circular QRs in the
presence of a magnetic flux are well studied theoretically, distorted
QRs are typically treated mainly for specific shapes of the contour
by using numerical methods. The energy states and persistent
current in a non-circular QR were studied numerically in Ref. [12]

and later in Ref. [13] for a two-dimensional (2D) elliptical ring of
non-constant width. Narrow elliptical rings were considered in
certain asymptotic models in Refs. [14,15] for a constant width ring,
and in Refs. [16,17] for an elliptical ring of non-constant width.
Asymptotic equations were also suggested for QRs of arbitrary
shapes where several examples of such were given [16,17]. Specific
effects arising from a very specially distorted contour that consists
of constant-curvature segments were studied in Refs. [2,18]. The
persistent current in a narrow 2D QR on a surface of constant
negative curvature was considered in Ref. [19]. We also mention Ref.
[20] in which an interesting asymptotic treatment procedure is
suggested for 2D narrow quantum rings. The two lowest quantum
energy states of an elliptical QR were studied numerically in Ref.
[21] with the one-dimensional (1D) model.

In this paper, we formulate the relations of the energy states and
persistent current oscillations of electrons confined to a
QR of arbitrary shape in the framework of the 1D model describing
an electron with delta-shaped potential along a contour (Secti-
ons 1 and 2). We ignore the electron's spin and treat only its spatial
degree of freedom. Based on these relations, the dependence of the
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spectrum and persistent current on the geometric properties of the
contour is demonstrated using analytical calculations for quantum
rings that are distorted circles with various orders of symmetry.
In particular, an elliptical QR (two axes of symmetry) is treated
in Section 3. The instances of a QR with one axis of symmetry
(Section 4) and an asymmetric QR (Section 5) are similarly studied.
Conclusions are given in Section 6.

2. General theory

For narrow rings, in which we are especially interested, the
electron energy levels stemming from the different radial eigen-
functions are far apart. The energy bands arising from the
azimuthal structure of the ring do not depend (to leading order)
on the ring width. The effect of ring width is completely contained
within a prefactor to the one-dimensional energy levels. Hence,
the structure of the energy levels of a 2D ring threaded by a flux
tube can be quantitatively described by a 1D ring with certain
effective parameters that captures the azimuthal structure.

To directly evaluate the effect of curvature symmetry on the
properties of electron spectrum and its persistent current, we
consider the motion of a single electron with delta-function
potential in a planar infinitely narrow QR. Under this assumption,
a general relationship between the path curvature and the
electronic properties of a free particle confined to the 1D closed
contour will be derived below.

We study the effect of a magnetic field, Bð0;0;Hðx; yÞÞ, that acts
perpendicular to the plane of motion of an electron z¼0, where
ðx; y; zÞ are the Cartesian coordinates. The electron is confined to a
smooth closed 1D contour, Fðx; yÞ ¼ 0, z¼0, which is the boundary
of the flat inner domain S. Thus we start with the Hamiltonian

H¼ 1
2me

bpτ�
e
c
Aτ

� �2
ð1Þ

which describes the motion of an electron confined to a flat closed
1D contour, where me is the effective mass of the electron; τ is the
tangential direction to the contour; bpτ and Aτ are, respectively,
tangential projections of the electron momentum operator bp and
the vector potential A for the given magnetic field configuration,
which are taken along the contour.

In order to write the corresponding Schrödinger equation
explicitly, we introduce new curved orthogonal coordinates ðξ;η; zÞ
z¼ z; xþ iy¼ f ðωÞ; ω¼ ξþ iη;
f ðωÞ ¼ uðξ;ηÞþ ivðξ;ηÞ; ð2Þ
with the basic unit vectors aξ, aη, az , and such that the line
Fðx; yÞ ¼ 0 turns into the unit circle jωj ¼ 1. Here the function f ðωÞ
conformally maps a certain domain of the plane ω¼ ξþ iη con-
taining the unit circle onto a domain of the ðx; yÞ�plane containing
the line Fðx; yÞ ¼ 0 and preserves the positive orientation of the
contour (aξ � aη ¼ az). It is known (see Ref. [22]) that at least one
mapping function f ðωÞ always exists.

It is natural now to use “polar” coordinates ω¼ ρeiθ . Then
xþ iy¼ f ðρeiθÞ and the basic unit vectors of this orthogonal
coordinate system are aρ, aθ , az , where aθ is tangential to the
contour. Along the contour, the impulse bpτ and the tangential
vector potential Aτ on the contour are equal, respectively, to the
projections of the operator bp and the vector potential A onto the
direction aθ when ρ¼ 1, i.e. Aτ ¼ Aθð1;θÞaθð1;θÞ. The vector
transformation is achieved through the Lamé coefficients hz ¼ 1,
hρðρ;θÞ and hθðρ;θÞ ¼ ρhρðρ;θÞ, where, in the polar coordinate
system

hρðρ;θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂u
∂ρ

� �2

þ ∂v
∂ρ

� �2
s

¼ df ðωÞ
dω

���� ����
ω ¼ ρeiθ

:

Along the contour ρ¼ 1, the vector relations in the curvilinear
coordinates lead to the Schrödinger equation Hψ ðθÞ ¼ Eψ ðθÞ with
the Hamiltonian

H¼ ℏ2

2meg2ðθÞ
�i

d
dθ

�egðθÞ
cℏ

Aθð1;θÞ
� �2

; ð3Þ

where gðθÞ ¼ hρðρ¼ 1;θÞ. The wave function ψ ðθÞ should be
single-valued, i.e. satisfies the boundary conditions
ψ ðθÞ ¼ψ ðθþ2πÞ and dψ ðθÞ=dθ¼ dψ ðθþ2πÞ=dθ.

We perform a unitary gauge transformation H0 ¼UHU�1 by
choosing

UðθÞ ¼ exp � ie
cℏ

Z θ

0
Aθð1; tÞgðtÞ dt

 !
: ð4Þ

This transforms the Hamiltonian (3) into the field-free Hamilto-
nian

H0 ¼� ℏ2

2meg2ðθÞ
d2

dθ2 ð5Þ

while the wave function is given by the relation ψ ðθÞ ¼ U�1ðθÞ ~ψ ðθÞ
in which ~ψ ðθÞ is an eigenfunction of a certain boundary value
problem for

d2 ~ψ

dθ2 þK2
ng

2ðθÞ ~ψ ¼ 0 ð6Þ

where Kn
2 and the electron energy En are related by

K2
n ¼ 2meEn=ℏ2. Denoting the quantum flux Φ0 ¼ ch=e, one might

rewrite the boundary conditions as follows:

~ψ ðθÞ ¼ ~ψ ð2πþθÞei2πν; d ~ψ ðθÞ
dθ

¼ d ~ψ ð2πþθÞ
dθ

ei2πν; ð7Þ

where the parameter ν, defined for �1=2oνr1=2, is a
Φ0�periodic function of the flux Φ:

ν¼ ν
Φ
Φ0

� �
¼

Φ
Φ0

� Φ
Φ0

� 	
if

Φ
Φ0

� Φ
Φ0

� 	
r1

2
Φ
Φ0

� Φ
Φ0

� 	
�1 if

Φ
Φ0

� Φ
Φ0

� 	
4

1
2

8>>><>>>: : ð8Þ

By virtue of the periodicity of Aθð1;θÞ and gðθÞ, the flux

Φ¼
Z 2πþθ

θ
gðtÞAθð1; tÞ dt ¼ ∮A dl¼∬

S
Hðx; yÞ dS

is the magnetic flux through S that is induced by the magnetic
field B¼Hðx; yÞaz .

Due to the periodic coefficients, the dimensionless equation (6)
can be treated with the Bloch theorem (or, equivalently, Floquet's
theory) according to which such wave functions exist for any
magnetic fluxΦ and have the form ~ψ nðθÞ ¼ϕnðθÞexpð�iνθÞ, where
ϕnðθÞ are the periodic functions. Except for the trivial case of the
circular QR, the spectrum displays gaps that occur only at ν¼ 0
and ν¼ 1=2, i.e. at half-integer or integer Φ. Width of the n-th
gap very quickly tends to zero as n-1. Eigenfunctions are
complex for νa0, 1/2. Purely real eigenfunctions may arise only
for ν¼ 0, 1/2 in which case the corresponding quantum spectrum
is simple.

It is often convenient to represent the wave functions as

~ψ nðθÞ ¼
1
Ωn

exp i
Z θ

0
φnðtÞ dt

 !
; ð9Þ

where Ωn ¼ R 2π
0 gðθÞexpð�2

R θ
0 ImφnðtÞ dtÞ dθ is the normalizing

coefficient. Inserting Eq. (9) into Eq. (6) yields the nonlinear
equation

i
dφnðθÞ
dθ

�φ2
nðθÞþK2

ng
2ðθÞ ¼ 0 ð10Þ
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