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H I G H L I G H T S

� Our work studies an Anderson transition in a 2D electron gas with a random gap.
� A diffusive regime exists for weak scattering and a localized regime for strong scattering.
� The numerical results are supported by a convergent strong coupling expansion in the localized regime.
� The exponent of the localization length varies from 1.3 to 1.5 and depends on model parameters.
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a b s t r a c t

We study the properties of the spinor wavefunction in a strongly disordered environment on a two-
dimensional lattice. By employing a transfer-matrix calculation we find that there is a transition from
delocalized to localized states at a critical value of the disorder strength. We prove that there exists an
Anderson localized phase with exponentially decaying correlations for sufficiently strong scattering. Our
results indicate that suppressed backscattering is not sufficient to prevent Anderson localization of
surface states in topological insulators.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The classical approach to randomly scattered particles leads to
diffusion, where random scattering originates either from parti-
cle–particle collisions (e.g., in a gas) or from collisions with (static)
impurity scatterers. In quantum systems, however, diffusion
appears only for weak disorder whereas it is destroyed due to
Anderson localization at stronger randomness [1,2]. This effect is
particularly strong in low-dimensional systems, such as two-
dimensional graphene sheets or the surface of topological insula-
tors. The scaling approach to generic random scattering [2] states
that diffusion is entirely suppressed by Anderson localization for
dimension dr2. On the other hand, it has been argued that
Anderson localization is prevented on the surface of topological
insulators due to suppressed backscattering [3,4].

Inspired by the recent observation of metallic behavior (i.e.
diffusive or even ballistic transport) in disordered two-dimensional
systems (graphene) [5,6], a general discussion of diffusion and
localization of quantum particle is required, which takes into
account a spinor structure of the wavefunction. Two possibilities
have been considered, namely ballistic transport for finite systems
[7,8] and diffusive transport for infinite systems [9]. Diffusion is
related to long ranged correlations, which is usually caused by

spontaneous symmetry breaking [9,10]. This behavior might be
restricted to the regime of weak scattering, since strong scattering
is capable to localize particles. The aspect of weak localization is
ignored here on purpose because it has its own problems [11,12].
This will be discussed in a separate paper. Instead, we will focus in
the following mostly on the case of strong scattering. This is
motivated by recent numerical studies, which have indicated that
there is a transition to a localized phase at sufficiently strong
disorder [13,14]. Here we will analyze details of the transition in
terms of the scaling behavior of the localization length for strips of
finite width. Moreover, the infinite system will be treated analyti-
cally within a strong scattering expansion. The latter provides a
rigorous proof for exponential localization, supporting the numerical
results at strong disorder. We study a random gap model with linear
spectrum (2D Dirac fermions), but our methods can be easily applied
to other systems as well.

2. Model

We consider the surface Hamiltonian of a topological insulator
with bulk inversion symmetry of momentum k [3,14–16]

H¼
hðkÞ 0
0 hnð�kÞ

 !
; hðkÞ ¼ ℏ

CþM�ðDþδÞk2 vF ðkxþ ikyÞ
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This Hamiltonian consists of a pair of massive Dirac Hamiltonians
hðkÞ, hnð�kÞ. It should be noticed that this Hamiltonian reads in
coordinate space

H ¼ h 0
0 hT

� �

with the matrix transposition T. We include disorder by a random
variable M with mean m. For our numerical transfer-matrix
calculation we use a box distribution with width W. For simplicity
we choose the Dirac point, where C¼0 and D¼0. The main feature
is that there are two bands that touch each other at a spectral node
k¼0 if M¼0, whereas Ma0 opens a gap Δ¼ 2jMj. Thus, a random
M creates a random gap. Our aim is to calculate the localization
length Λ of the eigenstate ψ at energy E¼0 which satisfies hψ ¼ 0
and the transition probability of a moving particle. The two block
Hamiltonians hðkÞ, hnð�kÞ act on two separate spaces with the
same localization properties. Therefore, it is sufficient to study just
one of them.

2.1. Localization length

The localization length Λ of the eigenstates of Hamiltonian (1)
can be calculated numerically within a transfer-matrix approach.
For this purpose the continuous Hamiltonian must be discretized
in space (cf. Appendix A). Then the transfer-matrix Tl of the
eigenvalue problem ψ lþ1 ¼ hYψ lþhDψ l�1 (cf. Eqs. (27) and (28))
reads

Tl ¼
hY hD

1 0

 !
; ð2Þ

which enables us to evaluate the Lyapunov exponents of the
wavefunction [17,18]. With the initial values ψ0 and ψ1 the iteration
of Eq. (28) provides the wavefunction ψL at site L by applying the
product matrix

ML ¼ ∏
L

l ¼ 1
Tl: ð3Þ

For a random Hamiltonian this is a product of random matrices
that satisfies Oseledec's theorem [19]. The latter states that there
exists a limiting matrix

Γ ¼ lim
L-1

ðM†
LMLÞ1=2L: ð4Þ

The eigenvalues of Γ are usually written as a diagonal matrix with
exponential functions expðγiÞ, where γi is the Lyapunov exponent
(LE). Adapting the numerical algorithm described in Ref. [18], the
whole Lyapunov spectrum can be calculated and the smallest LE is
identified with the inverse localization length 1=Λ [17]. Λ increases
with the system width M according to a power law ΛpMα , where
α41 (αo1) in the regime of extended (localized) states, and α¼ 1
in the critical regime. For the exponentially localized regime we
expect Λpconst. According to the one-parameter scaling theory
by MacKinnon [20], the normalized localization length ~Λ ¼ Λ=M,
being a function of disorder strength W and system width M,
depends only on a single parameter

~ΛðM;WÞ ¼ f ðξðWÞ=MÞ; ð5Þ

where ξ is a characteristic length of the system generated by
disorder. Thus, any change of disorder strength W can be compen-
sated by a change of the system width M. If there is a scale-
invariant point Wc we can expand ~Λ in its vicinity by assuming a
power law with critical exponent ν of the correlation length as

ξ¼ jW�Wcj� ν. Then we have [18]

ln ~Λ ¼ ln ~Λcþ ∑
S

s ¼ 1
AsðjW�WcjM1=νÞs ¼ ln ~Λcþ ∑

S

s ¼ 1
As

ξ

M

� �� s=ν

:

ð6Þ

2.2. Transition probability

The motion of a quantum particle from site r′ to site r during
the time t is described by the transition probability

Prr′ðtÞ ¼ j〈rjexpð� iHtÞjr′〉j2: ð7Þ
If we assume that Prr′ðtÞ describes diffusion, we can obtain the
mean square displacement with respect to r′¼ 0 from the diffu-
sion equation

〈r2k〉¼∑
r
r2kPr;0ðtÞ ¼Dt; ð8Þ

which, after applying a Laplace transformation, becomes

∑
r
r2k

Z 1

0
Pr;0ðtÞe� εt dt ¼ D

ε2
: ð9Þ

Using the Green's function Grr′ðzÞ ¼ ðH�zÞ�1
rr′ , we obtain for large

distances jr�r′j and ε� 0Z 1

0
Prr′ðtÞe� εt dt �

Z EF

E0
〈jGrr′ðEþ iεÞj2〉d dE¼

Z EF

E0
〈Grr′ðEþ iεÞGr′rðE� iεÞ〉d dE;

ð10Þ
where 〈…〉d is the average with respect to disorder that is causing
scattering. E0 is the lower band edge and Tr4ð…Þ is the trace with
respect to the 4 spinor components. The second equation is due to
the fact that the Hamiltonian is Hermitean. Then we get with r′¼ 0
from Eq. (10) for the diffusion coefficient at the energy E

DðEÞ � lim
ε-0

ε2∑
r
r2k〈Gr0ðEþ iεÞG0rðE� iεÞ〉d ð11Þ

with D¼ R EF
E0

DðEÞ dE in Eq. (9).
According to Eq. (9), diffusion requires a long range correlation for

small ε in Eq. (10). Anderson localization, on the other hand, is
characterized by an exponentially decaying correlation. A natural
approach to study the latter for strong randomness would be a
hopping expansion in Eq. (11). Unfortunately, such an expansion is
plagued by poles on both sides of the real axis. This problem can be
avoided if we focus on the most relevant contributions of the
randomly fluctuating product of Green's functions Gr;r′ðiεÞGr′;rð� iεÞ.
They are associated with the underlying chiral symmetry. These
fluctuations have been studied previously in Ref. [21], where the
large scale behavior was found to be associated with the Grassmann
integral

Krr′ ¼ 〈Gr0ðEþ iεÞG0rðE� iεÞ〉d � K0

Z
φrφ

′
r′JD½φ;φ′� ð12Þ

with D½φ;φ′� ¼∏r dφ dφ′ and with the Jacobian

J ¼ 1

detgðH0þ iεþ iηÛ
2Þ
; H0 ¼ 〈H〉; Û r ¼

1þ2φrφ
′
r �2φrs1

�2φ′
rs1 1�2φrφ

′
r

 !
:

ð13Þ
The Jacobian appears since we have restricted the integration over
randomness to those degrees of freedom which are associated with a
global symmetry of the system. It is written in terms of a graded
determinant detg, where the latter is expressed by conventional
determinants in the relation

detg
A Θ

Θ B

� �
¼ detðAÞ
detðBÞdetð1�ΘB�1ΘA�1Þ:

The parameter η is the scattering rate, which can be considered as an
external parameter that is either calculated in self-consistent Born
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