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H I G H L I G H T S

� The studied model system is a ferromagnetic–normal–ferromagnetic structure on graphene.
� Rashba spin–orbit interaction is assumed in the normal region.
� The electronic transport is studied for different SOI strength and incidence angles and other parameters.
� Quantum oscillation, non-symmetry of the transport in the incident angle and etc. are observed.
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a b s t r a c t

We have studied spin-dependent electron tunneling through the Rashba barrier in a monolayer
graphene lattices. The transfer matrix method, have been employed to obtain the spin dependent
transport properties of the chiral particles. It is shown that graphene sheets in the presence of Rashba
spin–orbit barrier will act as an electron spin-inverter.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Graphene with quasi relativistic energy spectrum of Dirac fermions
[1,2] and unconventional quantum Hall effect (QHE) [3–5] has
attracted attention from the electronic transport and spintronic
research community. Experimental studies in graphene have revealed
a long spin relaxation length (1 mm at room temperature) [6,7]. So,
graphene is a promising candidate for spintronic devices as well as of
prospective applications in nano-elecronics.

Spin-dependent electron transport have been studied exten-
sively in grapheme [8,9]. Applications in spintronics depend on the
control of spin–orbit (SO) coupling [10–12]. This interaction
comprises of two different types; intrinsic and Rashba (extrinsic)
couplings [13,14]. The former is induced by the carbon intra-
atomic spin–orbit interaction and may open a gap in graphene
energy dispersion This interaction can convert graphene to a
topological insulator and induce some other interesting effects
like the fractional spin Hall effect [15,16]. The intrinsic SOI is very
weak in graphene and can be ignored in the calculations [17].

Theoretical calculations demonstrate that the strength of the
extrinsic spin–orbit coupling can be remarkably higher than the
intrinsic spin–orbit interaction [17,18]. Rashba spin–orbit interac-
tion that arises from the structure inversion asymmetry (SIA), is
introduced by a substrate surface or an external electric field [19].

The ferromagnetic layer in magnetic tunnel junctions (MTJ)
[20–22] splits the energies of the electrons into two spin-resolved
sub-bands. Therefore this splitting leads to spin-dependent cur-
rent passing through the junctions. Manipulating the spin degree
of freedom is the key point of spintronics.

Spin inversion has been studied vastly in the common as well
as in nano-scale semiconductors [23,24]. It has been shown that a
triple quantum dot in dc and ac magnetic fields in the presence of
tunable gate voltages, acts as a spin-inverter. In Ref. [24], it has
been shown that graphene sheets in the presence of Rashba spin–
orbit barrier will act as an electron spin-inverter.

2. Model and approach

In this work, spin transport of the electrons has been studied in
grapheme in which Dirac equation governs dynamics of the
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carriers. The system considered here is a ferromagnetic–Rashba
barrier–ferromagnetic (FG/RG/FG) junction constructed in the x–y
plane of graphene depicted in Fig. 1. RG refers to the non-magnetic
graphene layer which is affected by Rashba spin–orbit interaction
generated by a gate voltage placed on top of the sheet. The width
of the graphene sheet is assumed to be large enough, so that we
can ignore the edge effects.

The Hamiltonian in regions (1) and (3) which are assumed to be
of different ferromagnetic strength is

H1ð3Þ ¼H0þHs1ð3Þ ð1Þ
H0 is Dirac Hamiltonian for massless fermions

H0 ¼ � iћvF ðsx∂xþsy∂yÞ ð2Þ
ℏ is Planck constant, vF denotes the Fermi velocity in graphene and
s is Pauli matrice in pseudospin space.

The exchange Hamiltonian Hs1(3) is defined as

Hs1ð3Þ ¼ hð
0 Þs ð3Þ

where hð0Þ is the exchange interaction magnitude in region 1 (3).
The Hamiltonian in the central region with Rashba interaction is

H¼H0þHR ð4Þ
HR is the Rashba (SO) interaction, and is written as [25,26]

HR ¼ λR=2ðsysx�sxsyÞ ð5Þ
where λR is the strength of Rashba (SO) interaction and si denotes
Pauli matrix in the spin space.

We have considered a spin up electron with the given energy E
that propagates from the left ferromagnetic contact to the inter-
face with Rashba region.

The wave functions of the electrons exhibit the chiral proper-
ties of the graphene. The solutions of the Dirac Eqs. (1) and (4), are
in the following spinor form:

ψðxr0Þ ¼ expðikx cos φÞ
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We have assumed an incidence and reflection angle with the
normal to the interface of magnitude φ (for spin up) and φ′ (for
spin down) in region 1, angles φ1, φ2, φ3 and φ4, in region 2 and φ
(for spin up) and φ′(for spin down) in region 3.
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where

φ1 ¼ tan �1ðk tan φ=k1Þ;
φ2 ¼ tan �1ðk tan φ=k2Þ;
φ3 ¼ π�φ1; φ4 ¼ π�φ2 ð8Þ
r; t; r′; t′ are the scattering amplitudes in ferromagnetic regions
(1) and (3) and Aj are the coefficients of the electronic wave
function in Rashba region.
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above equations ensure that all of the four states carry the same
particle current density.

From the conservation of momentum along y-axis, we have

k sin φ¼ k1 sin φ1 ¼ ::: ð11Þ
At the interfaces, the pseudo-spinor wave functions have to be
continuous [27], so

ψð0� Þ ¼ ψð0þ Þ;ψðL� Þ ¼ ψðLþ Þ ð12Þ
We obtain the scattering amplitudes by applying the boundary
conditions at the interfaces.

3. Results

A numerical study of spin-transport properties in FG/RG/FG is
presented in this section. The Fermi energy is taken to be
EF¼1 meV and all the energies are written in units of EF [28].

The incoming electron is assumed to be spin up polarized and
the length of the Rashba spin–orbit interaction region is taken to
be L¼2 nm.

In Fig. 2, the transmission probability (normalized to the unit
incoming electron probability) of the incoming spin up electron to
the transmitted spin down state (T↑-↑) is plot as a function of the
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Fig. 1. Schematic illustration of the Rashba spin–orbit barrier with height λR and
length L.
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