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H I G H L I G H T S

� We consider the possibility of dynamic chaos in graphene superlattice.
� We investigate the conditions of dynamic chaos by Melnikov criterion.
� We found the critical amplitude of alternate current above which would be a chaos.
� We found the frequencies of alternate current at which chaos would be absent.
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a b s t r a c t

d'Alembert equation written for the electromagnetic waves propagating in the graphene superlattice is
discussed. The chaotic behavior of the electrons in graphene superlattice is studied by the Melnikov
method. Dynamic chaos of electron in graphene superlattice is shown to appear for certain intervals of
amplitudes of preset alternate current. The frequency dependence of the critical amplitude of alternate
current above which would be a chaos is investigated.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The influence of strong electromagnetic (EM) fields on the optical
and electric properties of graphene structures are under the very
intensive theoretical and experimental study last time [1–14]. The
magnetic field influence on the conductivity of graphene structures
was investigated in Refs. [6–10]. In Refs. [11,12] the quantum Hall
effect in bi- and trilayer graphene was investigated. The dynamical
modification of the graphene band structure under the high-
frequency (HF) EM radiation was studied in Refs. [15–17]. The
quasi-classical theory of nonlinear EM response of graphene was

developed in Refs. [3,18,19], where the possible applications of
graphene structures for generation of terahertz (THz) radiation were
discussed. Furthermore, the possibility of using of superlattices (SL)
as a working medium of generators and amplifiers of THz EM
radiation [20,21] induces the interest to the electrodynamical proper-
ties of graphene SL (GSL) [16,22–28].

Besides, SL is the suitable medium for nonlinear and solitary
EM waves generation [28–31]. For instance, to form the cnoidal
waves and solitons in semiconductor SL a relatively small electric
fields (10�103 V/cm) in compared with bulk semiconductors are
required [29,30]. It explains the fundamental and practical sig-
nificance of structures with SL [20,21,32,33]. In Ref. [33] the work
of so-called soliton memory register based on the possibility of
solitons propagation in the SL was described.

Propagation of 2π-pulses in ideal (nondissipative) GSL was
investigated in Ref. [28]. One of the conditions for solitary wave
observing in real GSL is the low value of EM pulse duration in
comparision with the relaxation time in graphene [28]. In Ref. [34]
the possibility of using of graphene-based absorber to produce
laser pulses with duration of less than 200 fs was demonstrated.
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The strong damping of solitary waves in SL leads to the EM pulse
transit time does not exceed 10�10 s. This fact is an obstacle to the
possibility of their practical application for the information transfer-
ring over long distances. Thus, the possibility of using of GSL in laser
physics for ultrashort EM pulses generating makes the problem of
propagation, amplifying and stabilization of solitary EM waves in
such structures.

There are different ways to stabilize the solitary waves in SL. The
stabilization of soliton in SL by the electric current was studied in Ref.
[32]. The stabilization of soliton in semiconductor SL by the HF electric
field was ivestigated in Refs. [29,30,35,36]. The stabilization of the
solitary wave by the HF electric field and formation of so-called
dissipative pulses (π-pulses) in GSL were studied in Ref. [16]. However,
the presence of additional HF field can lead to appearance of dynamic
chaos in the SL electron subsystem [37–46]. Such phenomenon should
be taken into account in the process of stabilization of the nonlinear
and solitary EM waves. The interaction of cnoidal EM waves with the
electron subsystem of semiconductor SL which is dynamically sto-
chastized by these waves was studied in Ref. [38]. In Ref. [41] the
chaotic dynamics of electron in SL miniband was shown to be possible
when the external microwave signal effect on the oscillations of the
current which are due to the motion of electric field domain walls. In
Ref. [42] the semiclassical method is used to describe the electrons
chaotic behavior and the symmetry-breaking in semiconductor SL. The
magnetic field influence on the chaotic dynamics of electrons in the SL
miniband was investigated in Ref. [43]. In Ref. [44] the rectification of
EM waves was shown to be assisted by the transition to a dissipative
chaos. The dissipative chaos in semiconductor SL was studied numeri-
cally in Ref. [45]. In Ref. [46] the conditions for a transition to chaos in
semiconductor SL were found analytical. Below we investigate the
chaotic dynamics of the charge carriers induced by the alternate
current in GSL with dissipation.

2. d'Alembert equation in ideal GSL

GSL is considered to be obtained by a sheet of graphene deposited
on a banded substrate formed by periodically alternating layers of
any two crystals (for instance, SiO2/h-BN [22] or SiO2/SiC [24]) along
the axis Oz. The electron spectrum of this GSL is [25]:

εðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2þp2xυ

2
FþΔ2

1 1� cos
pzd
ℏ

� �s
; ð1Þ

where SL period d and parameters Δ, Δ1 are set during the process of
obtaining of the GSL, υF is the velocity on the Fermi surface. If the ideal
GSL is in the EM field with vector potential A¼ ð0;0;AzÞ then the
current density, induced by this field through the GSL axis has the
form [28]

j0z ¼ � en0dΔ2
1 sin φ

2a0ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2þΔ2

1ð1� cos φÞ
q ; ð2Þ

where φ¼ edAz=ℏc is the dimensionless potential of EM field,

ω2
0 ¼ 2πn0e2d

2Δ=a0ℏ2, n0 is the surface concentration of charge
carriers, a0 is the graphene layer width, b¼ Δ1=Δ. Thus the unper-
turbed d'Alembert equation in GSL is [28]:

∂2φ
∂t2

�c2
∂2φ
∂x2

þ ω2
0b

2 sin φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb2ð1� cos φÞ

q ¼ 0; ð3Þ

The solution of Eq. (3) is found in the form φðx; tÞ ¼ φðξÞ, where

ξ¼ ðx�utÞ=L0, u is the EM wave velocity, L0 ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�β2

q
=ω0, β¼ u=c.

Taking into account the new argument ξ we rewrite the Eq. (3) in to

� d2φ

dξ2
þ b2 sin φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þb2ð1� cos φÞ
q ¼ 0: ð4Þ

Also Eq. (4) can be rewritten in the following form

dφ
dξ ¼ χðξÞ;
dχ
dξ ¼ b2 sin φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þb2ð1� cos φÞ
p :

8><
>: ð5Þ

To obtain the separatrix solutions of Eq. (5) φsðξÞ and χsðξÞ ¼ dφs=dξ
the next boundary conditions are supposed to be performed [47]

φsð0Þ ¼ π; lim
ξ-�1

φsðξÞ ¼ 0; ð6Þ

For the separatrix solutions we have lim
ξ-1

χs ¼ 0, therefore χsjφs ¼ 0 ¼ 0.

Thus the first integrating in Eq. (4) gives

χs ¼ gðb;φsÞ; ð7Þ
where

gðb; zÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb2ð1� cos zÞ

q
�1

r
: ð8Þ

After integrating in Eq. (7) with the conditions (6) we derive

ξ¼
Z φsðξÞ

π

dz
gðb; zÞ : ð9Þ

3. Melnikov function

If alternate electric current is set in GSL with dissipation then in
d'Alambert equation instead formula (2) we have for current

density: jz ¼ j0z þ jazþ jdz . Here j0z is unperturbed current density (2)
arising in ideal GSL, jaz ¼ j0 cos ωt is the preset alternate current

density, jdz ¼ �kφ′t is the current taking into account the electron
inter-mini-band transitions [35,36]. Thus the perturbed double
sine-Gordon equation is:
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1þb2ð1� cos φÞ

q ¼ 4πc
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∂φ
∂t

� �
:

ð10Þ
where j0 and ω are the amplitude and the frequency of alternate
current. For the argument ξ the eq. (10) takes the form:

� d2φ

dξ2
�2μ

dφ
dξ

þ b2 sin φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb2ð1� cos φÞ

q ¼ q cos Ωðξ�ξxÞ: ð11Þ

where we define: μ¼ 2πckβ=ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�β2

q
, q¼ 4πedj0=ℏω2

0,

Ω¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�β2

q
=ω0β, and ξx ¼ x=L0.

To find out the values of parameters q, Ω and b when the chaos
in the electron subsystem occurs we use the Melnikov method
[39,48–52]. Eq. (11) can be rewritten in the next canonical form:

dφ
dξ ¼ χðξÞ;
dχ
dξ ¼ b2 sin φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þb2ð1� cos φÞ
p �2μχðξÞ�q cos Ωðξ�ξxÞ:

8><
>: ð12Þ

Thus Melnikov function (which means the distance between stable
manifold and unstable manifold on the plane ðχ;φÞ [49–52]) is
written as following:

Dðξ1Þ ¼ �
Z þ1

�1
χsð2μχsþq cos Ωðξþξ1�ξxÞÞ dξ: ð13Þ
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