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H I G H L I G H T S

� We consider modulated graphene monolayer in the presence of an external perpendicular magnetic field and a drifted momentum induced by
constant current.

� We employ the self-consistent field approach to derive analytically the magnetoplasmon modes: inter- and intra-band magnetoplasmon spectra.
� We explore and numerically discuss the unstable regime in the plasmon spectrum.
� This can be further used as Terahertz radiation source.
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a b s t r a c t

We examine the feasibility of a drift-induced instability of Dirac fermions in monolayer graphene in a
weak periodic potential, taking into account of a steady current. In this work, we treat magnetic field
induced Landau quantization including the effects of drift induced current (an in-plane dc electric field),
and analyze both the inter-and the intra-Landau band aspects of the magnetoplasmon spectrum.
We employ the framework of self-consistent-field approximation to determine the plasmon spectrum.
The existence of the drift induced instability regions in the intra-Landau band magnetoplasmon
spectrum as a function of inverse magnetic field is shown and discussed. The unstable intra-Landau
band plasmon excitation could be a potential source of THz radiation with electronic device applications.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the fabrication of crystalline graphene monolayers
[1–4] has generated a great interest in the field of condensed
matter physics due to its unique properties. The study of this two-
dimensional material is not only of academic interest but there are
serious efforts underway to investigate whether graphene can
serve as the basic material for carbon-based electronics [5–7]. In
its honeycomb lattice of carbon atoms, quasiparticles have a band
structure in which electron band and valence band touch at two
points in the Brillouin zone. At these Dirac points the quasiparti-
cles obey the massless Dirac equation. In other words, they behave
as massless chiral Dirac fermions leading to a linear dispersion
relation εk ¼ VFℏk (with the characteristic velocity VFC106 m=sÞ.

The role of electron–electron interactions [8] in electronic proper-
ties of graphene is a major area of investigation with several open
questions. In this regard, plasmon modes have been identified that
arise due to electronic correlations and observed in graphene [9–16].
In the presence of a magnetic field, these magnetoplasmons [17,18]

occur at frequencies that oscillate with the magnetic field. When this
system is subjected to a weak electric modulation [19,20], broad-
ening of the Landau levels occurs resulting in both inter- and intra-
Landau band magnetoplasmons. The former arise as a result of
electronic transitions between different Landau bands, whereas the
latter are due to transitions within a single Landau band.

In this paper, we address the effects of a drift current on both the
inter- and the intra-Landau band magnetoplasmons in graphene
within the self-consistent-field (SCF) approach. We find that the
intra-Landau band magnetoplasmons exhibit an instability which
can be controlled by an applied magnetic field. It might be possible
to harness this effect as a source of THz radiation for future
optoelectronic applications of graphene. The basic physical mechan-
ism behind the current-driven plasmon instability is the transfer of
energy from the current to the growing plasmon waves of a given
system. With a suitable coupling arrangement, this energy can be
further converted to electromagnetic radiation.

Plasmons in graphene were studied as early as the 1980s [21]
and more recently [22–25]. Drift induced instability has been
observed in high mobility electron transistor [26] and calculated
theoretically in layered graphene system [27]. In addition, a
variety of theoretical and experimental work has been done on
drift induced current instability in conventional two-dimensional
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electron gas (2DEG) system with the identification of the drift
induced instability regime which occurs when the drift velocity is
of the order of/twice the Fermi velocity [28–38].

2. Formulation

We consider a monolayer of graphene in the xy-plane along
with a constant perpendicular magnetic field applied in the
z-direction. We employ the Landau gauge ð0;Bx;0Þ to include the
magnetic field induced effects on our system. The low energy two-
dimensional Dirac-like Hamiltonian [17–20] is expressed as

H¼ VFs:π ð1Þ

where VF is the Fermi velocity, s ¼ ðsx; syÞ are Pauli spin matrices
and π ¼ pþeBx is the conjugate momentum. To study the effects of
a drift-induced steady current, we include a drift-induced momen-
tum pdr ¼ ℏkdr in the Hamiltonian given in Eq. (1) in the
y-direction as

H¼ VF

0 πx� iðπy�pdrÞ
πxþ iðπy�pdrÞ 0

 !
ð2Þ

The energy eigenvalues of the above Hamiltonian given in Eq. (2)
are obtained as

ɛ2n ¼ α2n ð3Þ

where α2 ¼ 2V2
Fℏ

2=l2B ¼ ℏ2ω2
g , with n being the Landau level index,

ωg ¼ VF
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2eB=ℏ

p
is the cyclotron frequency of graphene, and

lB ¼
ffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB

p
is the magnetic length. The corresponding eigenfunc-

tions are given as

Ψ ðn; ky; kdrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

2LylB

s � iϕn�1
xþ x0 � xdr

lB

� �
ϕn

xþx0 �xdr
lB

� �
0
B@

1
CAexpðikyyÞ ð4Þ

where ϕnðky; kdrÞ ¼ ð1=ð ffiffiffi
π

p
2nn!lBÞ�1=2Þ expð�ðxþx0�xdrÞ=2lBÞ Hn

ððxþx0�xdrÞ=lBÞ eiky:y, as the above Hamiltonian explicitly depends
on the x-coordinate and is independent of the y-coordinate so
expðikyyÞ is the plane wave solution in the y-direction. Ly is the
length of the graphene sheet in the y-direction, x0¼ l2Bky is the
centre of the oscillator described by Eq. (2) and xdr ¼ l2Bkdr is
the shift in the centre of the oscillator due to drift-induced current.
We consider the effect of a weak periodic modulation potential
with the following Hamiltonian:

H′¼ V0 cos
2π
a
x

� �
; ð5Þ

here a is the period of modulation with amplitude V0. Energy
eigenvalue of this modulation potential can be found by perturba-
tion theory as single particle Landau-quantized energies ɛn are
taken to be much larger than V0. The first-order correction in
energy can be calculated by the expectation value of modulation
potential as

ɛ′n ¼ 〈Ψn;kyjH′jΨn;ky〉: ð6Þ

Solving for eigenvalue of energy correction to the unmodulated
energy by applying first-order perturbation theory, we obtain

ɛ′n ¼ Vn cos
2π
a
ðx0�xdrÞ

� �
; ð7Þ

where Vn ¼ ðV0=2Þexpð�X=2Þ½LnðXÞþLn�1ðXÞ�, with X ¼ ð2π=aÞ2ℏ
=2eB and LnðXÞ is an associated Laguerre polynomial with Landau
level index n. Total energy eigenvalues of the present system in the
presence of perpendicular magnetic field, drift and modulation

potential can be rewritten as

ɛðn; ky; kdrÞ ¼ ɛnþɛ′n ¼ ɛnþVn cos
2π
a
ðx0�xdrÞ

� �
: ð8Þ

In this equation, we must note the effect of drift in cosine term:
ð2π=aÞðx0�xdrÞ. Essentially this term is responsible for the effects
of drift induced current. In the limit of zero drift induced effects,
these results are same as in Refs. [19,20]. Alternatively, to ensure
the symmetry properties, above expression can be rewritten as

ɛðn; ky; kdrÞ ¼ ɛðn; ky7kdrÞ ¼ ɛnþVn cos
2π
a
ðx07xdrÞ

� �
:

The width of the Landau band spectrum is given as

W ¼ 2jVnj cos
2π
a
xdrÞ

� �

3. Polarization function in the presence of drift induced
effects

The static and dynamic response properties of an electron system
are all embodied in the polarization function. We employ Ehrenreich
and Cohen SCF approach [39] to calculate the polarization function.
SCF treatment presented here has already been successfully
employed in order to investigate electron correlation effects with
and without magnetic field in conventional 2DEG system [28–38,40–
43] and also recently in graphene [19,20,22–25]. This is demon-
strated by the excellent agreement of SCF predictions of plasmon
spectra with experiments [9–16]. Following the SCF approach,
polarization function for monolayer graphene in the presence of
drift induced potential can be derived and discussed.

To determine the effects of steady current with drift-induced
momentum pdr , a drifted equilibrium distribution function can be
written as f ðɛn′;ky �qy Þ ) f ðɛn′;ky �qy �kdr Þ. With this fact, the polariza-
tion function Πðq;ωÞ with shift in ky integration variable i.e.
Ky ¼ ky�kdr , can be modified as

Πðq;ωÞ ¼ 1
A

∑
n;n′Ky

Cnn′
ℏq2

2eB

 !
f ðɛn′;Ky�qyÞ� f ðɛn;KyÞ

ɛðn′;Kyþkdr�qyÞ�ɛðn;KyþkdrÞþℏωþ iη

ð9Þ
where for n′rn

Cnn′ðwÞ ¼ n′!
n!

� �
e�wwn�n′ðLn�n′

n′ ðwÞÞ2

with

w¼ l2Bq
2

2

� �
¼ ℏq2

2eB

The polarization function and the dielectric response function
εðq;ωÞ including effects of electron–electron interactions are
related as

εðq;ωÞ ¼ 1�vcðqÞΠðq;ωÞ; ð10Þ

where vcðqÞ ¼ 2πe2=kq is the two-dimensional Coulomb potential,
k is the background dielectric constant. Alternatively, this can be
written in the following form Πðq;ωÞ ¼Πþ ðq;ωÞþΠ� ðq;ωÞ with

Π7 ðq;ωÞ ¼ 2eB
πaℏ

∑
n;n′

Cnn′
ℏq2

2eB

 !

�
Z a

0
dx0

f ðɛðn; x0ÞÞ
ɛðn; x07xdrÞ�ɛðn′ ; x0þx′07 ðxdrþx′drÞÞ7ℏω7 iη

;

ð11Þ
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