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H I G H L I G H T S

� Theoretical calculation of specific heat of zigzag carbon nanotubes in the context of the Holstein model.
� The investigation of specific heat versus electron–phonon interaction.
� The investigation of specific heat versus diameters and electronic concentration.
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a b s t r a c t

We study the temperature behavior of electronic specific heat of metallic carbon nanotubes in the
context of Holstein model Hamiltonian. Green's function approach has been implemented in order to
calculate the electronic contribution to the specific heat of the compound. Second order perturbation
theory has been used to obtain interacting Green's function of model Hamiltonian. The results show a
monotonic increasing behavior for specific heat with temperature for both armchair and zigzag carbon
nanotubes. Furthermore, the effect of various electronic concentrations and the electron–phonon
coupling strengths on the specific heat has been investigated.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Carbon nanotubes made of a single graphite layer rolled up into
a hollow cylinder are a one-dimensional allotrope of carbon [1–3].
The investigation of the electronic properties of carbon nanotubes
[3] has been of research interests for theorists for more than 50
years. Among these topics, one can point to the sensitive depen-
dence of electronic structure on the diameter and chirality of the
tubule. It has been shown that CNTs can be either metallic or
semiconducting with a band gap varying from zero to a few tenths
of an eV, depending on their diameter and chirality. Also the
thermal properties of the compounds are not well characterized
experimentally, however, they are important from the viewpoint
of basic research and possible application. It has been predicted
that the diameter of tubes affects the temperature dependence of
specific heat and might be shown to be a sign of dimensional
crossover as the temperature is varied [4]. The unusual linear wave
vector dependence of the electronic structure of a single graphene
sheet on fermi energy indicates that specific heat has a quadratic
dependence on temperature in contrast to typical metals. The
specific heat of the out-of- and in-plane phonon modes gets the

higher values compared to the electronic contribution at low
temperatures. At low temperature, only the acoustic bands will
be populated and a linear temperature dependence for the
phononic contribution to the specific heat has been evaluated
analytically [4]. Also the electronic specific heat for a quasi-one-
dimensional metallic CNT has a linear behavior for temperature
dependence [4]. It has been seen that phonons have dominant
contribution to the specific heat at all the temperatures. The
electronic specific heat of a semiconducting tube should vanish
roughly exponentially as T⟶0 and reduces to lower amounts
compared to the metallic one [5]. Using phononic density of states
theoretically, the phonon specific heat of graphite has lower values
below those of graphene and isolated (10,10) single-walled CNT
[6]. A strikingly linear behavior for temperature dependence of a
multi-walled CNT over the entire temperature range (10–300 K)
has been found using experimental measurements [7].

The effect of lattice vibration of atoms is an important factor to
study electronic properties of single-walled CNT [3]. It should be
noticed that some aspects of electronic properties of nanotubes
such as charge density wave and superconductivity instabilities
can be understood by considering the coupling of electrons with
phonons [8,9]. Local density of states of zigzag graphene ribbons and
zigzag CNTs has been investigated due to electron–phonon coupling
[10,11]. Among all the lattice vibrational modes, we concentrate on
the out-of-plane vibrations along the radius of CNT. The symmetric
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property of this displacement with respect to their neighboring
atoms leads to coupling between electronic density and this mode
of phonons [12]. The out-of-plane vibrations are dispersionless and
couple with electrons in the context of Holstein model Hamiltonian
[13]. The behavior of optical spectrum of graphene and CNT has been
studied in the context of the Holstein model using second order
perturbation theory for self-energy [14]. Temperature dependence of
transport properties such as electrical and thermal conductivities
have been investigated based on the Holstein model [15–17].

The aim of this work is to study the temperature dependence of
specific heat of doped metallic zigzag and armchair CNT in the
context of Holstein model Hamiltonian. Using the equation of
motion of Green's function, one can calculate the electronic
contribution to specific heat. Interacting Green's function has been
obtained under second order perturbation theory for self-energy.
Afterwards, specific heat of the CNT can be found using corrected
electronic Green's function and the effect of electron–phonon
coupling strength on the specific heat can be found.

2. The effect of electron–phonon interaction on the excitation
spectrum

The effect of interaction between itinerant electrons and local
dispersionless phonon modes on the electronic properties of CNTs
can be investigated in the context of the following Holstein model
Hamiltonian [13]:

H ¼ �t∑
δ;j
ða†jþδ;sbj;sþh:c:Þþg∑

i;s
ða†i;sai;sþb†i;sbi;sÞðciþc†i Þþω0c

†
i ci; ð1Þ

where t implies the hopping amplitude of moving electrons
between nearest neighbor atoms belonging to sublattices A and
B. Also, ai;sðbi;sÞ denotes the on-site annihilation operator for
electrons in the sublattice A (B) with spin s. ciðc†i Þ denotes the
annihilation (creation) operator for local modes of phonons. ω0

and g are the phonon frequency and the electron–phonon cou-
pling constant respectively. According to Fig. 1, the primitive unit
cell vectors have been shown as the following vectors:

a1 ¼ ai; a2 ¼
a
2
ð� iþ

ffiffiffi
3

p
jÞ; ð2Þ

where a is the length of the lattice translational vector. We
consider unit vector j along the zigzag direction. The matrix
element of noninteracting electronic Green's function has been
introduced as Gð0Þ

AAðRij; τÞ ¼ � 〈Tðai;sðτÞa†j;sð0ÞÞ〉, where Rij denotes the
vector connecting nearest neighbor unit cells. After rewriting the
Hamiltonian in terms of the Fourier transformation of operators,
the elements of noninteracting electronic Green's function get the

following forms [18]:

Gð0Þ
AAðk; iωnÞ ¼ Gð0Þ

BB ðk; iωnÞ ¼ ∑
j ¼ 7

1
2

1
iωn�EjðkÞ

;

Gð0Þ
AB ðk; iωnÞ ¼ ∑

j ¼ 7

1
2
ϕnðkÞ
Eþ ðkÞ

j
iωn�EjðkÞ

� �
;

Gð0Þ
BA ðk; iωnÞ ¼ ∑

j ¼ 7

1
2
ϕðkÞ
Eþ ðkÞ

j
iωn�EjðkÞ

� �
;

EjðkÞ ¼ tjjϕðkÞj; ϕðkÞ ¼ 1þ cos ðkx=2Þ expð� iky
ffiffiffi
3

p
=2Þ; ð3Þ

where ωn ¼ ð2nþ1Þπ=β is Fermionic Matsubara's frequency and k
is the electron wave vector belonging to the first Brillouin zone of
honeycomb lattice. Moreover, noninteracting phononic Green's
function is given by

Dð0Þðp; ipmÞ ¼
2ω0

ðipmÞ2�ω2
0

: ð4Þ

Based on the Migdal theorem [19], vertex correction in the
construction of electronic self-energy is negligible. Also this
theorem permits us to consider self-energy at lowest order
perturbation theory and to neglect higher orders of electronic
self-energy in honeycomb lattice. Using the Feynman rules [20],
matrix elements of self-energy (Σαβðk; iωnÞ) at second order
perturbation theory are given as

Σαβðk; iωnÞ ¼ � 1
β
∑
p;m

g2Dð0Þðp; ipmÞGð0Þ
αβðk�p; iωn� ipmÞ; ð5Þ

where Gð0Þ
αβ have been introduced in Eq. (3). Within the Dirac cone

approximation that is valid in the energy range of 1 eV one can
neglect the off-diagonal elements of the self-energy matrix and
diagonal elements are independent of the wave vector. In other
words we have Σαβðk; iωnÞ ¼ δαβΣðiωnÞ. Substituting Eqs. (3) and (4)
into Eq. (5) and summing over internal Matsubara's frequency
according to the Feynman rules, the non-zero element of self-
energy matrix gets the following form:

ΣðiωnÞ ¼
g2

2N
∑
k;j

nBðω0ÞþnF ðtjjϕðkÞjÞ
iωn� jtjϕðkÞjþω0

þ nBðω0Þþ1�nF ðtjjϕðkÞjÞ
iωn� jtjϕðkÞj�ω0

� �
;

ð6Þ
where nF ðEÞ ¼ 1=ðeβEþ1Þ and nBðω0Þ ¼ 1=ðeβω0 �1Þ are the Fermi
and Bosonic distribution functions, respectively. N denotes the
number of unit cells and summation in Eq. (6) is performed over k
points belonging to the first Brillouin zone of graphene. The
perturbative expansion for interacting Green's function in Matsu-
bara's notation is given by [20]

G�1ðk; iωnÞ ¼ Gð0Þ �1ðk; iωnÞ�Σðk; iωnÞ: ð7Þ
The self-energy and noninteracting Green's function matrices are
given by

Gðk; iωnÞ ¼
Gð0Þ
AA ðk; iωnÞ Gð0Þ

AB ðk; iωnÞ
Gð0Þ
BA ðk; iωnÞ Gð0Þ

BB ðk; iωnÞ

0
@

1
A;

ΣðiωnÞ ¼
ΣðiωnÞ 0

0 ΣðiωnÞ

 !
; ð8Þ

in which the diagonal matrix elements of self-energy have been
presented in Eq. (6). In analogy to noninteracting Green's function
matrix presented in Eq. (8), there is a matrix form for the interacting
one. After substituting the elements of noninteracting Green's func-
tion into Eq. (8) and applying Dyson's equation that has been
indicated in Eq. (7), the elements of interacting Green's function
are obtained as follows:

GAAðk; iωnÞ ¼ GBBðk; iωnÞ ¼ ∑
j ¼ 7

1
2

1
iωn�EjðkÞ�ΣðiωnÞ

;

Fig. 1. A zigzag CNT whose axes is along the y axes. The light dashed lines denote
the Bravais lattice unit cell. Each cell includes two nonequivalent sites, which are
indicated by A and B. a1 and a2 are the primitive vectors of unit cell. a01, a02 and a03
are three vectors that connect nearest neighbor sites.
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