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H I G H L I G H T S

� Model of a one-electron crater-like quantum ring with non-uniform thickness.
� Variations on the ring morphology change its optoelectronic and magnetic properties.
� A small non-uniformity of the crater thickness might suppress the electron rotation.
� The bigger the number of the valleys, the larger are tunnel currents.
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a b s t r a c t

We consider a model of a quantum ring in the form of a thin layer, whose thickness increases linearly
between inner and outer radii. We show that in the structural adiabatic limit, when the quantum ring
thickness is much smaller than its lateral dimension, the wave equation for the electron confined in such
structure can be completely separated. We use analytical solutions found for this model as the base
functions for analyzing the effect of the structural non-homogeneity on the electronic spectrum and the
Aharonov–Bohm oscillations of the energy levels, in the framework of the exact diagonalization method
we found that the pattern of the electron's possible pathways in its displacements generated by the
external magnetic field, forms a quasi-one-dimensional region along a guideline marked by a set of
highest points of the crater. Therefore, the Aharonov–Bohm oscillations of the energy levels in a crater-
shaped quantum dot without non-uniformities are similar to those in 1D quantum ring independently on
the crater width. We show that a slight non-uniformity produced by a single valley and single mountain
supresses the oscillations of several lower levels due to the localization of the corresponding rotational
states close to the mountain. Nevertheless, when the non-uniformity becomes substantial due to the
presence of multiple valleys and mountains, the rotational electron motion and the Aharonov–Bohm
oscillations generated by the external magnetic field are restored, owing to the electron tunneling
through mountains. We consider that our model of crater-shaped structure would be applicable in the
analysis of a variety of more complicated problems related to systems of few carriers confined in
nanostructures with ring-like geometry, as a starting point in the framework of the diagonalization
method.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the simplest, and most completely treated recently,
fields of application of the effective mass approximation for
semiconductor structures is the theory of quantum dots (QDs)
with one or two carriers confined inside them. For one-particle
QDs with spherical or axial symmetry, the calculations of the
energy spectrum can be performed exactly [1]. Besides, two-
particle problems for such structures are still relatively simple
enough, so that various exact [2] or approximation [3] methods

have been used recently in numerous works to carry out calcula-
tions to a high degree of accuracy for two-electron QDs or
electron–hole pair confined in quantum dots [4]. QDs hence could
furnish an excellent way of testing the validity of the quantum
theory of solids. The development of new semiconductor growth
techniques have made possible the fabrication of the self-
assembled quantum rings (QRs) [5], which in the presence of the
external magnetic field manifest a topologically determined
quantum-interference phenomenon, known as the Aharonov–
Bohm (AB) effect [6,7]. Such effect consists in oscillation of the
ground and the excited states energies in the increasing magnetic
field applied along the ring axis. But, it is also well-known that the
diminishing of the size of the QR's central hole or the presence of
any non-uniformity in a quasi-1D QR leads to a partial or total
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quenching of the AB oscillation of the energy levels [8,9]. The
crucial question arises therefore, whether the manufactured rings,
mainly non-uniform volcano-shaped could manifest the AB oscil-
lations, peculiar to an ideally circular ring. As shown in Ref. [10],
even though the fabricated quantum dots have in their shape a
strong non-uniformity, they still exhibit in the presence of the
magnetic field in their spectrum interference, patterns typical for
the quantum behavior of electrons in a 1D circular structure.
A similar analysis for two-particle QDs is much more complicated.
It is known that two-electron problem can be solved exactly only
for 1D QRs, or for QDs with parabolic confinement [1–3]. One can
use the exact solutions for two-electron QD with parabolic con-
finement as basis functions for solving a correspondent problem
for non-uniform QDs in the framework of the diagonalization
method [10]. However, this set of a basis functions is not proper to
QDs structures with a central hole. In the present work we
propose other set of functions that are exact solutions of the wave
equation for a one-particle crater-like QD whose thickness
increases linearly between the inner and outer radii with different
slopes in different radial directions. We believe that our model
could give an explanation of a weak sensibility of the peculiar
electronic properties of the rings to the presence of multiple
structural defects and the variation of the ring's width.

2. Theory

Recently developed new technique called “droplet homoepi-
taxy” enables one to fabricate new QR morphologies that may find
use in optoelectronic applications [11]. It was shown that the non-
uniform stripes in the radial directions are formed due to the
presence of the anisotropic strain in the rings fabricated by means
of this method [11]. Surface of such heterostructure seems as a
crater divided in various regions between radially directed valleys.
Therefore we consider below a model of a crater-like non-isotropic
QD in the form of a thin layer, in which the dependency of the
thickness d on the distance ρ from the axis and polar angle φ is
given by the relation:

dðρ;φÞ ¼ h0ρϑðρ�ρaÞϑðρb�ρÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρb

2þs2ρ2f 2ðφÞ
q

; f ðφÞ ¼ sin kφ

ð1Þ
here ϑðxÞ ¼ 0 for xo0 and ϑðxÞ ¼ 1 for x40 represent the Heavi-
side step-function, ρa and ρb are the inner and outer radii of the
crater, respectively, s is the non-uniformity's scale parameter, and
f ðφÞ is a fitting function which is selected for modeling an actual
volcano-shaped non-uniform structure. As s¼ 0, this relation
describes an axially symmetric crater, whose thickness is increased
linearly in the radial direction from a minimum value at the
central hole frontier up to top value h0 at the exterior frontier. On
the contrary, as s-1 relation (1) describes a non-uniform ring
with rectangular cross-sections in all radial directions. In this work
we consider a particular case given by the set of three functions
f ðφÞ ¼ sin kφ with k¼ 1=2;2;4. The schematic images of corre-
sponding morphologies are shown in Fig. 1.

Below, we assume a simple model with the infinite-barrier
confinement potential V ðrÞ, which is supposed to be equal to zero
inside the crater and to infinity otherwise. The external homogeneous

magnetic field B¼ Bẑ is applied along the Z axis. In our calculations
we use the effective Bohr radius an

0 ¼ ℏ2ε=mne2, the effective Rydberg
Ryn ¼ e2=2εan

0 and γ ¼ eℏB=2mncRyn as units of length, energy and
the dimensionless magnetic field strength, respectively, mn being the
electron effective mass and ε the dielectric constant.

The thicknesses of actual quantum dots manufactured up to
now are much smaller than their lateral dimensions. Due to such
feature of the QD's morphology one can take advantage of the
adiabatic approximation in which the fast movement in the
transversal direction of the electron and in its plane slow dis-
placements can be considered in turn [2]. In the framework of this
approximation, one should first analyze the fast electron motion in
the z direction at different electron's in-plane positions with polar
coordinatesðρ; φÞ, that are treated as parameters (cf. electron
motion for fixed nuclear position in molecular problems). Once
the correspondent ground state energies Ezðρ;φÞ at each in-plane
points are found (in our case Ezðρ;φÞ ¼ π2=d2ðρ;φÞ) then the
renormalized 2D Hamiltonian describing the effective-mass
approximation of the in-plane electron slow motion in the
presence of the magnetic field in QD whose profile is given by
Eq. (1) can be written as
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For uniform crater ðs¼ 0Þ eigenfunctions of the Hamiltonian (2)
depending on two quantum numbers, radial n and angular m can
be found exactly in a form of the linear combination of Hypergeo-
metric confluent functions:

Ψ n;mðρ;φÞ ¼ Ceimφρυe�γρ2=4½Mða; c; γρ2=2ÞþλUða; c; γρ2=2Þ�;
m¼ 0; 71; 72;⋯

a¼ ð1=2Þ½υþ1�ðEn:m�γmÞ=γ�; c¼ υþ1; υ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þπ2ρ2

b=h
2
0

q
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here En;m is the electron energy which is found as a solution with
number n of the transcendental equation that arises from the
boundary conditions Ψ n;mðρa;φÞ ¼Ψ n;mðρa;φÞ ¼ 0:

Mða; c; γρ2
a=2ÞUða; c; γρ2

b=2Þ�Mða; c; γρ2
b=2ÞUða; c; γρ2

a=2Þ ¼ 0 ð4Þ
Once Eq. (4) is solved, and the energies En;m and the wave

functions Ψ n;mðρ;φÞ are found then one can calculate the matrix
elements

〈nmjHðsÞjn′m′〉¼ Enmδn;n0δm;m0 þ m
π2

h20
s2f 2ðφÞ

�����
�����m′

* +
δn;n′ ð5Þ

For the function f ðφÞ ¼ sin kφ, chosen for our calculations, the
matrix elements (5) can be found explicitly:

〈nmjHðsÞjn′m′〉¼ Enmδm;m′þ
π2

4h20
s2ð2δm;m′�δm;m′þ2kþδm;m′�2kÞ

" #
δn;n′

ð6Þ
Thus a simple algorithm can be applied in order to find the

energies of the one-electron non-uniform crater-like QR in the
framework of the exact diagonalization method, that is reduced to

Fig. 1. 3D images of three different models of non-uniform quantum rings.
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