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H I G H L I G H T S

� Two-electron states in a spherically symmetric parabolic QD were considered.
� Using uncertainty relations the ground-state energy estimation was made.
� The dependence of ground-state energy on the QD size was studied.
� The state exchange time dependence on the QD size were obtained.
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a b s t r a c t

Using the Heisenberg uncertainty relationship and the stationary perturbation theory we consider two-
electron states in a spherically symmetric parabolic quantum dot (parabolic helium atom). The dependence
of ground-state energy on the QD size is studied. The energy of two-electron system monotonically
decreases with QD radius increase. The problem of the state exchange time control in QD is discussed,
taking into account the spins of the electrons in the Russell–Saunders approximation. With the increase of
the QD radius the state exchange time increases.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Quantum dots QD or “artificial atoms” [1] have become the
subject of researches during the last two decades. The problem of
theoretical study of two-electron states in 0-dimensional struc-
tures or quantum dots, quantum layers and rings has not only a
purely academic but also an applied meaning. The manipulation of
the energetic states can be used to create semiconductor nanoe-
lectronic devices of the new generation as well as on researches of
fundamental quantum mechanical principles [2–10]. From the
theoretical point of view, the problem of the two electrons located
in the quantum dots is identical to the problem of the helium
atom; however the localization of the electrons here is not due to
attracting by Coulomb field of the nucleus, but due to the repulsive
confinement potential. The circumstance which significantly

distinguishes artificial atoms from real ones is the energy levels
manipulation by changing geometrical size and form of the QD.

One of the first articles, devoted to the two-electron states in
quantum dots, was the work [11], where the authors viewed the
discrete levels of the energy of two electrons depending on QD
size and the magnetic field being perpendicularly to the plane of
the QD. The two-electron states in QD in magmatic field were
considered in the work [12]. Correlation energy of the interaction
of the two electrons in the quantum dots was considered in the
work [13] using the semiclassical approximation. The authors
investigated the energy spectra and wave functions of the two-
electron states in the quantum dots using the power series
expansion [14]. Applying 1/N expansion method, the authors
obtained a range of results [15]. The application of various
approximate methods in two-electron QD with parabolic confine-
ment potential has been viewed in the work [16]. Basing on
Hartree–Fock and Kohn–Sham 1/N methods and also numerical
solution of the Schrodinger equation, the energy eigenvalues of
the two-electron system were obtained. A comparison between
the results, based on the indicated methods, has been made. The
authors also suggested interpolating formulas for the energy
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eigenvalues. In Ref. [17] a research of the influence of the magnetic
field on the spectrum of electrons in QD was carried out. Using the
exact numerical schemes of diagonalization, the authors of the
work [18] obtained the energy spectrum of two-electrons QD with
parabolic confinement potential in the presence of Coulomb
impurity, localized in the center of a quantum dot with and
without homogeneous magnetic field. The low energy levels of
the two-electron quantum dots in the presence of the external
homogeneous magnetic field have been calculated by the authors
of the work [19], using the variational method based on the
construction of trial wave functions. Note that the interest in QD
with parabolic confinement potential sharply increased after it has
been shown that in quantum systems the generalized Khon
theorem may be performed [20]. The effect of symmetry in
small-size quantum dots of in the presence of the magnetic field
was studied in Ref. [21]. In the work [22], the authors investigated
the structural transitions (the symmetry breaking) in the two-
electron QD under the influence of the perpendicular magnetic
field. The effects, related with the impact of the environment on
the two-electron quantum dots, were studied in the work [23].

The characteristic particularity of the two-electron systems is
the exchange interaction between the electrons, which is respon-
sible for the exchange between the states in a quantum system
[24]. That is a purely quantum effect. It can be shown that two
electrons can exchange the states in time, and the exchange time
is determined by the exchange integral [25]. In this regard, it is
interesting to study the effect of the state exchange in parabolic
QD, which contains two electrons. In this paper, the parabolic
helium atom is investigated in the framework of the stationary
perturbation theory using its analogy with the helium atom. We
also estimate the ground-state energy value, using the Heisenberg
uncertainty relationship.

In quantum dots with a spherically symmetric parabolic con-
finement potential Vconf(r)¼(μω2r2)/2, the value of ω can be
estimated using the quantum virial theorem and the Heisenberg
uncertainty relation [9]:

ω� ℏ

μR2: ð1Þ

The Hamiltonian of the system is

Ĥ¼ ∑
2

i ¼ 1
ĤiþVð r!1; r
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where Ĥi ¼ �ℏ2

2μ∇
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i þVconf ðriÞ is the single-electron Hamiltonian in
parabolic QD, and
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��� ��� is the energy of interaction between the
electrons.

2. The estimation of the parabolic helium atom ground state
energy by the uncertainty relationship method

The energy value of the system is
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Note that the permutation of the particles does not change the
energy. So, minimization conditions by r1and r2: ∂E/∂r1¼0 and ∂E/
∂r2¼0 give the same value rmin. Let us assume that the electrons
are located diametrically. Suppose that p1¼p2¼p and r1¼r2¼r.
Then for the energy estimation we can use the Heisenberg
uncertainty principle for position and momentum:

EðrÞ � ℏ2

μr2
þμω2r2þ e2

2εr
: ð4Þ

Writing down the condition for minimization the energy of the
system

dEðrÞ
dr

¼ 0; ð5Þ

we come to the equation

μω2r4�e2

4ε
r�ℏ2

μ
¼ 0: ð6Þ

Multiplying Eq. (4) by μ/ℏ2, taking into account Eq. (5) and making
the following designations:

rrel ¼
r
aB
; Rrel ¼

R
aB
; ð7Þ

where aB¼(ℏ2ε)/(μe2),
we obtain

r4rel
R4
rel

�rrel�1¼ 0: ð8Þ

The numerical solution of Eq. (8) leads to the following depen-
dence rrel(Rrel) (Fig. 1).

Fig. 1 shows the dependence rrel of the QD radius. Here are
numerical solutions of Eq. (8). The curve 1 is polynomial approx-
imation of the exact numerical solution (curve 2). As seen from
Fig.1 with the increase of the QD radius rrel value increases. This
was expected because with the increase of the QD radius the
distance between the colliding electrons increases and the char-
acteristic radius of ground state increases.

On the base of this result we can calculate the energy
dependence on Rrel by substituting rrel(Rrel) in Eq. (4). Finally, we
obtain:

Emin ¼
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μa2B

1
r2rel

þ r2rel
R4
rel
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1
rrel

: ð9Þ

The quantities ℏ2=μa2B and e2/2aB have the dimension of energy,
and equal, respectively, 2R*and R*,where Rn ¼ ℏ2=2μa2B is the
effective Rydberg energy. We obtain to the following dependence
(Fig. 2). Fig. 2 shows that the energy of our system, calculated
using the uncertainty relationship method, monotonically
decreases with QD radius increase, because the interaction
between the electrons increases and also the size quantization
becomes weaker. As the result the curve of the E(Rrel) monotoni-
cally decreases.

Fig. 1. The dependence of the ground state radius on QD radius. 1 – Polynomial
approximation and 2 – exact numerical solution.
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