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H I G H L I G H T S

� Boundary conditions for non-ideal contacts with a quantum wire, which take into account relaxation in the leads, are derived.
� New regime of conduction in which a dc current is supplemented by ac oscillations is predicted in the wire with impurity on a non-ideal contact.
� IV curves and noise spectrum are calculated in the limit of high voltages.
� Both spinless and spinful cases are studied
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a b s t r a c t

The electron transport in a 1D conductor with an isolated local defect such as an impurity or a non-
adiabatic contact is studied theoretically. A new regime of conduction in correlated 1D systems is
predicted beyond the well-known regime of tunneling resulting in the power-law I–V-curves. In this
regime a quantum wire becomes “opened” at a voltage bias above the threshold value determined by
2kF-component of impurity potential renormalized by fluctuations, giving rise to a rapid increase of the
dc current, I , accompanied by ac oscillations of frequency f ¼ I=e. Manifestations of the effect resemble
the Coulomb blockade and the Josephson effect. The spin bias applied to the system affects the I–V curves
due to violation of the spin-charge separation at the defect site. The 1D conductor is described in terms of
the Tomonaga–Luttinger Hamiltonian with short range or long-range Coulomb interaction by means of
the bosonization technique. We derive boundary conditions that take into account relaxation in the leads
and permit to solve non-equilibrium problems. Charge fluctuations are studied by means of Gaussian
model which can be justified strictly in the limit of large voltages or strong inter-electronic repulsion.
Spin fluctuations are taken into account strictly by means of the refermionization technique applicable in
the case of spin-rotation invariant interaction.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that in 1D systems the interaction between
electrons cannot be considered as a small perturbation and the
system is described as the Luttinger liquid (LL) that is an alter-
native to the Fermi liquid for 1D electronic systems (for a review
see Refs. [1,2]), and Landau's Fermi-liquid picture where low-energy
excitations are single-electron quasiparticles that in many respects
behave like non-interacting electrons is not applicable. There are
different realizations of 1D electronic systems demonstrating proper-
ties of the LL. The examples are semiconductor-based quantumwires

in which dimensionality of the conduction electrons is reduced by
dimensional quantization and carbon nanotubes, and such distinctive
features of the LL as power-law suppression of tunneling into 1D
systems and spin-charge separation have been confirmed experi-
mentally, see e.g. Ref. [3].

Electron–electron interaction greatly affects electronic trans-
port in 1D systems. In particular, the back-scattering component of
the impurity potential in 1D systems with repulsive inter-
electronic interaction scales to infinity under renormalization
group transformations. Hence, even isolated impurities form
effectively large barriers and strongly suppress conductance [4–6].

On the other hand, the limit of strong interaction between
electrons in solids usually leads to the Wigner crystallization.
However, in 1D systems the long-range order is destroyed by
fluctuations [7]. So, strictly speaking, 1D Wigner crystals do not
exist, but the density–density correlation functions of 1D gas with
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Coulomb repulsion contain the 4kF oscillating part which decays
extremely slowly [8], like e� c

ffiffiffiffiffiffi
ln x

p
, that is slower than any power-

law. As the period corresponding to 4kF oscillations is exactly the
average inter-electron spacing, such a system can be considered as
a 1D Wigner crystal with pseudo-long-range order [8]. In the case
of short range inter-electronic interaction (which takes place in
gated quantum wires where the long-range part of the Coulomb
interaction is screened by electrons in the metallic gate) the 4kF
density correlations decay slowly as well, as the power-law with a
small exponent.

Sliding of electronic crystals contributes to conductance, the
most studied case being quasi-1D CDW compounds [9]. Defects
pin the CDW but when the driving electric field exceeds a
threshold field the CDW starts to slide resulting in non-linear
conductance and ac generation at washboard frequencies corre-
sponding to a shift of the CDW by one period [9]. As long as the LL
can be interpreted as a 1D form of the 1D Wigner crystal, one can
expect a similar dynamic regime of depinning, sliding and ac
generation in correlated 1D electron system as well. We show that
such a regime does exist, at least, in the quasiclassical limit when
quantum fluctuations at the impurity site are suppressed by strong
electron–electron interaction. Such a scenario was addressed ear-
lier in our letter [10] where the dynamic regime of conduction
accompanied by oscillations of frequency f ¼ I=e was predicted in
a spinless LL.

Full I–V curves of a single-channel LL with a single impurity were
studied by means of a thermodynamic Bethe ansatz technique by
Fendley et al. [11]. Egger and Grabert [12] calculated the I–V curves for
a specific value of interaction parameter Kρ ¼ 1=2 using the refermio-
nization technique which makes the Hamiltonian quadratic and,
hence, solvable exactly. But no non-stationary regime was found.
The possibility of generation of self-sustained current oscillations in a
quantum wire in a properly designed load circuit was considered in
Ref. [13], but these oscillations are a consequence of instability induced
by S-shaped I–V curves, and their origin is different from the
mechanism discussed in the present work. We suppose that the main
difference between our approach and Refs. [11–13] is that the
equilibrium distribution of incident particles (non-interacting fer-
mions, kinks and anti-kinks, etc.) was assumed in these papers.
However, as the distribution of the particles transmitted through the
defect is not the equilibrium one, the bosonic excitations of the LL are
reflected from the leads to the quantum wire even in the case of
adiabatic contacts since the reflection coefficient r¼ ð1�KρÞ=ð1þKρÞ
[14]. Then the incident waves consist in part of the particles reflected
from the contact. So if the relaxation inside the conducting channel is
small the distribution of the incident particles must not be necessarily
the equilibrium one, and this applies equally to fermions derived from
bosons after the refermionization. Therefore, one needs to calculate
the distribution function of the incident particles, and we perform this
by means of boundary conditions which take into account relaxation
processes induced by coupling of the quantumwire to the Fermi liquid
of the current leads considered as a heat bath. These boundary
conditions are valid for non-ideal contacts, and they generalize the
boundary conditions by Egger and Grabert [12] and the results of Safi
and Schulz [14,15] were derived for expectation values and ideal
adiabatic contacts.

We think that the results of Refs. [11–13] are applicable in the
limit of conducting channels longer than the damping length of
excitations due to coupling of electrons inside the wire to a
dissipative bosonic bath (phonons, density fluctuations in a
metallic gate, and so on). And we obtain the non-stationary regime
of conduction for practically important case of the quantum wire
which is shorter than the relaxation length, so that the relaxation
is governed by boundary conditions.

The structure of the paper is as follows. In Section 2 we
formulate the problem, derive boundary conditions at the

contacts, and derive equations of motion for the displacement
field at the impurity position. These equations resemble equations
of motion of coupled quantum pendulums. In Section 3 we use our
equations to study electronic transport in spinless LL. Using the
Gaussian model to account for fluctuations, we study I–V curves,
analyze noise spectrum, study non-Gaussian corrections and find
that the Gaussian approximation is justified in the limit of strong
interaction between electrons and large voltages. In Section 4 we
consider the spinful LL with strong enough interaction between
electrons when charge fluctuations at the defect position are
small. However, spin fluctuations are large and they are taken
into account strictly by means of the refermionization method in
spin sector valid in the case of spin-rotation invariant interaction
(Ks ¼ 1). In Section 5 we show that non-adiabatic contacts induce
non-stationary effects similar to those induced by impurities. In
Section 6 we formulate conclusions.

Below we set e, ℏ and kB to unity, restoring dimensional units in
final expressions when necessary.

2. General formulation

2.1. Problem formulation

We consider a correlated 1D conductor with an impurity at
x¼0 and connected to ideal Fermi-liquid reservoirs at x¼ 7L=2.
The Hamiltonian of the system with impurity consists of two
terms H ¼H0þHi. The first one is the bosonized Tomonaga–
Luttinger (TL) Hamiltonian that maps the 1D system of interacting
electrons to free massless bosons described in terms of the
displacement fields Φ̂νðt; xÞ and the conjugated momentum den-
sity Π̂νðt; xÞ ¼ ∂xΘ̂ν=π. Here ν¼ ρ; s denotes charge and spin
channels, respectively. The standard TL Hamiltonian in the Fourier
transformed form reads [1,2]

Ĥ0 ¼
πvF
2

∑
ν ¼ ρ;s

Z
dq
2π

Π̂
2
νþ

1

π2K2
ν

q2Φ̂
2
ν

( )
ð1Þ

here the LL parameters Kν, playing the role of the stiffness
coefficients of the elastic string described by Hamiltonian (1), are
related to the electron–electron interaction potential, and measure
the strength of interaction between electrons. In the spin-rotation
invariant case considered in our study, Ks ¼ 1, KρðqÞ ¼ 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þgðqÞ=πvF

p
, where g(q) is the Fourier transformed interaction

potential. In the case of the short-range interaction the depen-
dence of g on wave-vector q is usually neglected. For repulsive
interaction Kρo1. In infinite 1D gas with long-range Coulomb
interaction described by the approximate form VCðxÞ ¼ e2=
ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þd2

p
, where ε is a background dielectric constant and d is a

diameter of quantum wire, one obtains gðqÞ ¼ 2ðe2=εÞK0ðjqdjÞ� [8].
Thus

KρðqÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þγK0ðjqdjÞ

p ; γ ¼ 2e2

πℏvFε
� 2
137π

c
vF

� �
1
ε
; ð2Þ

where γ is the dimensionless parameter which measures the
strength of the Coulomb repulsion between the electrons.

In the case of the long-range interaction and finite length of the
conducting channel the Coulomb potential is modified by screen-
ing of the interaction by current leads. The exact form of the
screening depends on the geometry of the system. We consider 3D
metallic leads forming sheets of a plane capacitor connected by
the quantumwire. Then the screening by the leads can be depicted
in terms of the image charges, and the interaction potential
between charges located at x and x′ is described as

Vðx; x′Þ ¼ ∑
1

n ¼ �1
½VCðx�x′þ2nLÞ�VCðxþx′þ2nLþLÞ�; ð3Þ
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