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a b s t r a c t

A numerical scheme based on the tight-binding description for pz-electrons in graphene was developed
to study the formation and behaviors of plasmons in this two-dimensional electron system. The random
phase approximation has been used to calculate the dielectric function for arbitrary temperature and
doping level. We show that at zero-doping, only one kind of plasmons of long wavelength is observed at
sufficiently high temperature. At finite doping, such plasmons exist even at zero temperature, but
strongly damped, due to the interplay between the intra- and inter-band transition processes.
Particularly, we show a significant dependence of the plasmon spectrum on the wave-vector direction
in the regime of high doping, which is the reflection of the anisotropy of the energy surfaces far from the
Dirac point.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Due to the special arrangement of carbon atoms in a hexagonal
grid, the electronic structure of graphene exhibits many typical
features [1–4]. Fundamentally, it was pointed out that only pz

electrons govern the electrical and optical properties of this
material because the others, i.e., the s, px and py electrons, are
totally confined in the s-bonds between the carbon atoms [2]. The
response of such a pz electron system to static electric fields,
generated by a dc bias voltage, for instance, has been intensively
studied, showing many properties, such as high electron mobility
and high saturation drift velocity at high fields, which are very
attractive to applications in electronics [5].

Recently, studies of the dynamical response of graphene to
external electromagnetic fields has also been focused [6]. Obtained
results provide deep understandings of fundamental aspects of
electronic properties in this material, for instance, the screening of
Coulomb interaction induced by many-body effects, elementary
excitation spectra and collective oscillation modes [7–12]. It was
pointed out that graphene supports the propagation of not only
transverse magnetic modes, but also transverse electric ones [13].
For the former one, it is accompanied by the formation of
collective oscillations, or plasmons, of pz electron density in
graphene. In the limit of long wavelength, the square root law of

the plasmon dispersion, ωPðqÞp
ffiffiffi
q

p
, very similar to that in thin

films of normal metals [14] was pointed out. This theoretical
prediction was experimentally confirmed through the high resolu-
tion energy loss spectroscopy measurement [15]. So far, the
theoretical studies were basically realized using the consideration
of electrons in graphene as massless Dirac fermions and the
random phase approximation (RPA) to derive analytical expres-
sions for the dielectric function in the limit of zero temperature.

Since the plasmon spectrum is a result of the interplay between
the contributions of the intra- and inter-band transition processes
to the dielectric function, our aim in this work is to investigate
explicitly such an interplay to understand the formation of
plasmon modes in graphene. Our work is based on a full-band
calculation using the framework of the tight-binding description
for pz electrons combined with the random phase approximation
to calculate the dielectric function for different values of tempera-
ture and doping, i.e., going beyond the Dirac cone approximation
and the zero temperature limit. Our numerical results qualitatively
confirm available analytical ones and show differences such as the
dependence of the plasmon frequency on the direction of the wave
vector, which are essentially involved in the topological features of
energy surfaces.

The paper is divided into four sections. In the next section, we
will review basic concepts in the random phase approximation,
which is used in this work. In Section 3 we review our analytical
calculations for the dielectric functions. Practically, we use those
results to check the correctness of our numerical scheme. In
Section 4 we display results for the dispersion of plasmon in
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graphene at finite temperature and different values of the chemi-
cal potential. Finally, Section 5 is for conclusions.

2. Dielectric function and random phase approximation

Though the contents presented in this section can be found in
standard books [16–18], it would be still useful to summarize the
key points of the dynamical response theory in order to under-
stand how collective oscillation modes of an electron system can
be formed and theoretically described. Basically, the dielectric
function εðr; t; r′; t′Þ is a physical quantity needed to be investi-
gated. As the definition, it expresses the linear relationship
between the external scalar potential ϕextðr; tÞ and the total one
ϕtotðr; tÞ inside the system. More precisely the definition is [17]

ϕtotðr; tÞ ¼
Z

dr′
Z

dt′ε�1ðr; t; r′; t′Þϕextðr′; t′Þ ð1Þ

ϕextðr; tÞ ¼
Z

dr′
Z

dt′εðr; t; r′; t′Þϕtotðr′; t′Þ ð2Þ

According to the linear response theory, the dielectric function can
be expressed through a retarded correlation function χRðr; t; r′; t′Þ
of the particle density operator ρ̂ðr; tÞ,

ε�1ðr; t; r′; t′Þ ¼ δðr�r′Þδðt�t′Þþ
Z

dr″Vcðr�r′ÞχRðr″; t; r′; t′Þ ð3Þ

where

Vcðr�r′Þ ¼ e20
4πε0κjr�r′j ð4Þ

is the Coulomb potential governing the mutual interaction of
charged carriers (e040 is the value of elementary charge, ε0 the
vacuum dielectric permittivity, and κthe relative static dielectric
constant of system), and the retarded correlation function

χRðr; t; r′; t′Þ ¼ � i
ℏ
θðt�t′Þ〈½ρ̂ðr; tÞ; ρ̂ðr′; t′Þ�〉0 ð5Þ

is also called the electron–hole propagator wherein i is the
imaginary number, θ the conventional step function, the square
bracket ½…� the commutator, and the angle bracket 〈…〉0 implies
that the expectation value of inside operator is calculated in the
thermodynamic equilibrium.

Assuming the homogeneity of the system, it is more convenient
to rewrite all the above equations in the frequency and momen-
tum representation. The function χRðq;ωÞ is usually solved using
the method of equation of motion or the method of Feynman
diagrams [17]. In the random phase approximation the electron–
hole propagator and the corresponding dielectric function are
given by

χR
RPAðq;ωÞ ¼ χ0ðq;ωÞ

1�VcðqÞχ0ðq;ωÞ ð6Þ

εRPAðq;ωÞ ¼ 1�VcðqÞχ0ðq;ωÞ; ð7Þ
where χ0ðq;ωÞ is determined from the simple pair-bubble diagram
and formally takes the form [11]:

χ0ðq;ωÞ ¼ 1
Ω

∑
k;m;n

j〈m;kþqjeiq�rjn;k〉j2 f ðEm;kþqÞ� f ðEn;kÞ
Em;kþq�En;kþℏωþ iℏδ

ð8Þ

wherein fjm;k〉g are the single particle Bloch states corresponding to
the energies fEm;kg which are labelled by the energy band index m
and the k-vector in the first Brillouin zone; f ðɛÞ ¼ 1=ð1þeβɛÞ, with
β¼ 1=kBT being the Fermi function; δ an positive infinitesimal
number; and VcðqÞ the Fourier transform of the long-range Coulomb
potential. In the two-dimensional (2D) space, VcðqÞ ¼ e20=2ε0κq, and
the volume Ω should be replaced by the area S of the 2D system.

In general, the vanishing of the dielectric function is the
condition for the propagation of longitudinal electromagnetic fields
in a medium [16] which are accompanied by the collective oscilla-
tion modes of electron system. However, due to the interplay
between the inter- and intra-band transition processes, the disper-
sion of such oscillation modes ωPðqÞ is determined as the zeros of
the real part of εðq;ωÞ, i.e.,

Re½εðq;ωPÞ� ¼ 0 ð9Þ

The damping of such modes, however, is determined from the
imaginary part Im½εðq;ωPÞ�. In the following sections we will use
Eqs. (7) and (8) to calculate the RPA dielectric function and then
solve Eq. (9) to find the plasmon dispersions of graphene.

3. Graphene electronic structure and long wavelength
plasmon dispersion

Denote fa†i ; aig and fb†j ; bjg the operators creating and annihilat-
ing a pz electron at the nodes i and j of the A and B sub-lattices,
which constitute the graphene hexagonal one, respectively. The
Hamiltonian describing the dynamics of the pz electron system is
thus written in the tight-binding representation as follows:

H¼ �tcc ∑
iAA

∑
jAB

ða†i bjþb†j aiÞþμ∑
iAA

a†i aiþμ∑
jAB

b†j bj ð10Þ

where tccC2:67 eV is the hopping energy between two nearest
carbon atoms whose spacing is accC0:142 nm, and μ the chemical
potential away from half-filling induced by a gate or by doping. In
the momentum space Eq. (10) is rewritten as [2]

H¼∑
k
X†
k

μ hn

k

hk μ

 !
Xk; ð11Þ

where X†
k ¼ ða†k, b†kÞ is a two-component spinor and hk ¼

�tcc½expðikxaccÞþ2 expðikxacc=2Þ cos ð
ffiffiffi
3

p
kyacc=2Þ� is a tight-binding

function summed over the nearest neighbor sites. By diagonalizing
the matrix in Eq. (11) we obtain the expressions for the eigen-
energies En;k and for the corresponding eigen-wave-functions Xn;k

(n¼1,2):

En;k ¼ μþð�1Þn
ffiffiffiffiffiffiffiffiffiffiffi
hn

khk
q

ð12Þ

Xn;k ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þhn

khk
q 1

ð�1Þnhk

 !
ð13Þ

In Fig. 1(a) we display the well-known band structure of
graphene resulted from Eq. (12). The touching of the two energy
surfaces is clearly seen at six corner points of the hexagonal
Brillouin zone whose coordinates are K ¼ ð72π=3acc; 7 2π=
3
ffiffiffi
3

p
accÞ and K′¼ ð0; 74π=3

ffiffiffi
3

p
accÞ. The energy surfaces around

these K-points are zoomed out to clearly show the cone shape as
seen in the figure. However, they are not the ideal isotropic Dirac
cone, but just an approximation [see Eq. (14)]. In Fig. 1(b) we
present the Fermi energy surface EðkÞ ¼ EF to illustrate this fact.
For EF¼0.2 eV and 0.3 eV we see the circular shape of the Fermi
surface, but for EF¼0.6 eV, for instance, the anisotropy becomes
significant. In the next section we will demonstrate that the
anisotropy of the energy surfaces results in the dependence of
the plasmon frequency ωP on the direction of the wave vector q.

Using the k � p-method, around the K points Eqs. (12) and (13)
are well approximated by [2,3]

Enk ¼ μþð�1ÞnℏvF jkj ð14Þ
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