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HIGHLIGHTS

o Analytical derivation of the Taylor dispersion coefficient for various rheologies.

o Dispersion coefficients of the Herschel-Bulkley fluids can now be determined.

e Fluid rheology influences displacement distributions and dispersion coefficients.

o Time necessary to reach the Taylor regime does not depend on the fluid rheology.
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Dispersion of a passive tracer in a tube has been extensively studied in the case of Newtonian fluids since
the pioneer work of Taylor (1953). However, the influence of more complex rheological behavior on the
transport has only be scarcely investigated. Non-Newtonian fluids are increasingly used in the industry
and transport in this type of fluid merits therefore thorough investigations. An example of industrial
application is Enhanced Oil Recovery, that is based on the injection of non-Newtonian fluids as polymers
or surfactant solutions in porous media, which are then submitted to dispersion phenomena.

This work deals with transport of a passive tracer in shear thinning fluids with and without yield stress
whose constitutive behaviors are representative of a large number of industrial fluids. We focus on transport in
capillary tubes, essential for the understanding of dispersion in porous media. Transport is investigated at
different time scales by solving the advection—diffusion equation using a Two-Relaxation-Time Lattice-Boltz-
mann method. We also derived an analytical expression of the Taylor dispersion coefficient for a large range of
fluid rheologies. Dispersion coefficients of all fluids described by the Herschel-Bulkley model can now be
determined. Analytical and numerical results are compared and very good accordance is obtained.

We discuss the characteristic time scales of the transport before reaching steady state as a function of fluid
rheology and Péclet number. We show that the time to reach the dispersive regime is nearly independent of
the fluid rheology whereas the effective dispersion coefficient is a function of the rheological parameters.

We also present the displacement distribution of the tracer molecules (propagators) as a function of time
and show that they are strongly conditioned by the fluid rheology. Indeed, propagators give valuable infor-
mation on the temporal evolution of the concentration profile towards the stationary Taylor regime.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

different time scales and to take into account transient dynamics of
tracer transport. For this purpose, both analytical expressions and

Passive tracer transport in simple geometries has attracted the
attention of many researchers since the pioneering work of Taylor
(1953). For many applications, it is indeed very useful to have a deep
understanding of the interplay between advection and diffusion at
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numerical simulations have to be used. Surprisingly, for Newtonian
fluids and despite a very large number of publications, it is only
recently that an exact analytical expression is available for calculating
the evolution of the displacement variance in a pipe for vanishing
Neumann boundary conditions (Camassa et al., 2010). Here we are
interested in non-Newtonian fluids, particularly Herschel-Bulkley
fluids, circulating in a pipe under various conditions. Moreover, our
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final objective is to relate analytical and numerical results to quan-
tities that are directly measurable by Nuclear Magnetic Resonance
(NMR) velocimetry techniques (Callaghan, 1993). Indeed, using the
NMR propagator technique, one can measure the displacement dis-
tribution of water molecules in a section of the tube (propagator) and
extract for example its variance as a function of time. Particularly,
displacement distributions in combination with concentration pro-
files allow further understanding of the temporal evolution of the
tracer transport. For example for a Newtonian fluid, Codd et al. (1999)
measured the propagators at different times in a capillary tube near
the Taylor regime and could reproduce the observations with simple
numerical simulations without any fitting parameter.

The mechanisms at the origin of dispersion have been first
described and modeled by Taylor (1953), and later by Aris (1956),
both works being now referred to as the Taylor-Aris theory.
Essentially, in Poiseuille flow, the effective longitudinal diffusivity,
also called effective dispersion, can be much larger than the
molecular diffusivity because molecules can move randomly from
one streamline to another in the radial direction due to molecular
motions. This enhanced diffusivity depends on the Péclet number
(defined later) but also on the configuration of the velocity field. In
Poiseuille flow, the velocity field is different when considering
non-Newtonian fluids, yielding different dispersion coefficients.

Dispersion in non-Newtonian fluid has been studied by only few
researchers. Fan and Wang (1965, 1966) were the first to consider
non-Newtonian fluids in the framework of Taylor theory. They first
considered an Ostwald de Waele fluid (Fan and Wang, 1965) and
later a Bingham plastic fluid and an Ellis model fluid (Fan and Wang,
1966). Later on, dispersion coefficients were computed for fluids with
distinct rheologies (Goshal et al., 1971; Sha and Cox, 1974). Close to
our consideration, Booras and Krantz (1976) and Sharp (1993)
developed analytical expressions of the effective dispersion coeffi-
cient for shear thinning fluid but without taking into account the
yield stress. Sharp (1993) computed then the effective dispersion
coefficient for a particular yield stress fluid (n=1). More recently,
Ramana et al. (2012) derived analytical expressions of the time
dependent dispersion for Herschel-Bulkley, power law and Bingham
fluids to calculate when a stable dispersion coefficient is reached.

In this work, we focus on the temporal evolution of the propa-
gator as well as its variance for Herschel-Bulkley fluids, in order to
gain better comprehension of the transport process. We propose
useful analytical expressions not readily available in the literature
and perform numerical simulations to cover all regimes, the diffu-
sion, advection and finally dispersion dominated regime. In a first
part (theoretical considerations), we give analytical expressions for
the displacement variance and the dispersion coefficient for shear
thinning fluids taking into account the yield stress starting from
various existing formulations. In a second part (numerical
approach), we use Lattice-Boltzmann simulations to solve the
advection-diffusion equation in a large range of Péclet numbers in
order to compute not only the concentration profiles and propa-
gators but also the time dependency of the displacement variance.

2. Material and methods
2.1. Theoretical considerations

2.1.1. Newtonian and non-Newtonian flow fields in a cylindrical
channel

The Herschel-Bulkley model (Herschel and Bulkley, 1926) is a
simple and general model, that gives a good description of the
constitutive behavior of a wide range of non-Newtonian fluids

(Coussot, 2014). It relates the shear stress 7 to the shear rate y by
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with ne[0;1]. 7o is the yield stress and k is the fluid consistency
expressed in units of Pas~—". The model also includes the
description of Newtonian fluid when choosing n=1, 7o =0 and k
equal to the dynamic viscosity 7.

In the present paper we will focus on fluids flowing through a
circular channel. With a negative pressure gradient dp/dz oriented
along the channel axis (z-direction) the cylindrical symmetry of
the channel and the momentum balance give

rdp
()= ~3dz (2)
The shear rate in this unidirectional geometry is given by
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where v(r) is the velocity in the z-direction. Combining Eq. (1) with
Egs. (2) and (3) the expression of the velocity profile v(r), after
appropriate integrations, is given by the following expression:
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where R is the pipe diameter and 7 =r/R. 7'y is the radius of the plug
flow such that z(fo) =70, it is thus defined as Fo=ro/R with
ro = — 279 dp/dz. For 7 < Ty, the shear stress is smaller than the
yield stress 7y, thus there is no deformation of the fluid and the
velocity profile is flat. It is also important to note that if #o—1,
v(r) =0 vr. Typical velocity profiles are shown in Fig. 1.

2.1.2. Advection—diffusion equation

The coupling between convective and diffusive transport, generally
known as dispersion, is analytically described by the Advection-Dif-
fusion Equation (ADE) which is directly resulting from the mass con-
servation law. For isotropic diffusion in a unidirectional flow (along the
z-axis) in a cylindrical channel, the ADE can be written as

=D, AC(r,z,t), )

oC(r,z,t) \aC(r, z,t)
ot () 0z

with C(r,z,t) being the tracer concentration at time t, D, the mole-
cular diffusion coefficient of the tracer and A the Laplace operator. The
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Fig. 1. Velocity profiles used in the simulations. The black continuous line is the
Poiseuille curve (n=1; 7o =0), the red dashed line is the shear thinning profile
(n=0.5; ¥ =0) and the blue dotted line corresponds to a shear thinning profile
with a yield stress (n=0.5; #o = 0.25). (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
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