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H I G H L I G H T S

� Surface stress and surface inertia
have been taken into account to
study the acoustic vibration of a
nanotube.

� Both surface stress and surface iner-
tia have significant influence on the
vibration behavior of the nanotube.

� Due to the surface effect, resonant
frequency of some vibration modes
may be the same as that of lower
order by the classical elasticity.

� The surface effect may either
decrease or increase the Raman shift
compared to the classical results.

G R A P H I C A L A B S T R A C T

The dispersion relation of torsion mode demonstrated that the effect of surface inertia may render the
vibration frequency of the third order consistent with the lowest one in conventional elasticity.
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a b s t r a c t

Vibration frequency analysis of nanostructures may be essential for study of their thermal conductivity
and mechanical characterization. Given the high surface-to-volume ratio, the elastic vibrations of an
infinitely long cylindrical nanotube have been studied by considering both the effects of surface stress
and that of surface inertia within the framework of surface elasticity. The phonon dispersion and the
resonant frequencies for the specific vibration modes have been calculated. Numerical results have
indicated that the surface stress and the surface inertia have equally important effect on the vibration
behavior of the nanotube that may depend on the vibration modes as well. Due to the surface effect, the
vibration modes of lower order by the classical elasticity may be indeed the modes of higher order. The
surface effect on the low-frequency Raman shift has also been found.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Due to the development of synthesis technology, nanotubes of
a wide variety of materials have been synthesized. As nanotubes

exhibit prominent properties, they can be used as fundamental
components of functional assemblies and systems which may play
an important role in the future nanotechnology [1–4]. Among
many of the potential applications, phonon behaviors can be
involved since phonon spectrum plays a key part in the
temperature-dependent transport [5,6], superconductivity [7,8],
and optical characterization [9–11] of nanotubes. Consequently
researchers have devoted abundant efforts to study their elastic
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vibrational properties [12–17]. In those works, nanotubes were
considered as cylindrical shells, and the vibrations were dealt with
classical isotropic or anisotropic continuum elasticity models.

It is noteworthy however that many nanostructures exhibit size
dependent elastic behavior when characterized by the conven-
tional elasticity. To capture such effect on the vibration behavior,
non-classical elasticity like nonlocal elasticity has been adopted in
some investigations [18–20]. Owing to the high ratio of surface
area to volume in nanostructures, the size dependent behavior
may be attributed to the surface effect as shown by the experi-
ment of Chen et al. [21]. Consequently, many efforts [22–25] have
recently been made to study the surface effect on the mechanical
behavior of nanostructure by surface elasticity which was firstly
proposed by Gurtin and Murdoch [26]. According to the theory,
the surface can actually be treated as an elastic membrane without
thickness perfectly bonded to the bulk. In the limited studies on
the dynamic behavior of nanostructures by surface elasticity, the
mass density of the surface has been neglected and hence the
surface effect, which indeed is the effect of surface stress, has been
demonstrated to be significant. But according to the thermody-
namic definitions of the surface properties [27], the surface may
also possess mass which actually appears in the original surface
elasticity model proposed by Murdoch [28], the surface inertia
effect should be captured as well when studying the vibration of
nanostructures. In this regard, one of the present authors [29] has
preliminary shown for nanowires, the effect of surface inertia can
be significant.

Given the higher ratio of surface area to volume in nanotubes
than in nanowires, the surface effect on the vibrations is antici-
pated to be prominent. Therefore, in this paper, we are motivated
to study the elastic vibrations of nanotubes by accounting for both
the surface stress and surface inertia.

2. Problem formulation

Let us consider an infinitely long cylindrical nanotube, whose
outer radius and inner radius are respectively Ro and Ri. To
consider the surface effect, we take advantage of the surface
elasticity proposed by Gurtin and Murdoch [26]. According to
the theory, there is a linear relationship between surface stress
and surface strain, that is

ssαβ ¼ λsεγγδαβ þ 2μsεαβ ð1Þ

where εαβ is the tensor of surface strain, δαβ is the Kronecker delta,
λs and μs are the surface Lame constants. In Eq. (1), the residual
surface stress has been neglected. To capture the effect of surface
inertia, we assume the mass density of the surface is ρs which has
a dimension of kg=m2.

With the presence of surface effect, the Euler–Lagrange equa-
tions for vibrations can be obtained easily if the Lagrangian of a
nanotube is expressed explicitly. Herein, we only give the final
results. The motion equations in the bulk can be obtained as

∇ �r¼ ρ
∂2u
∂t2

ð2Þ

Due to the assumption of traction-free boundary conditions on
both inner and outer free surfaces, the motion equations at the
outer surface r¼ Ro read [30]

−Rosrr−ssθθ ¼ ρsRo
∂2ur

∂t2
; ð3Þ

−Rosrθ þ
∂ssθθ
∂θ

þ Ro
∂ssθz
∂z

¼ ρsRo
∂2uθ

∂t2
; ð4Þ

−Rosrz þ ∂ssθz
∂θ

þ Ro
∂sszz
∂z

¼ ρsRo
∂2uz

∂t2
: ð5Þ

and at the inner surface r¼ Ri

Risrr−ssθθ ¼ ρsRi
∂2ur

∂t2
; ð6Þ

Risrθ þ
∂ssθθ
∂θ

þ Ri
∂ssθz
∂z

¼ ρsRi
∂2uθ

∂t2
; ð7Þ

Risrz þ
∂ssθz
∂θ

þ Ri
∂sszz
∂z

¼ ρsRi
∂2uz

∂t2
: ð8Þ

As displayed in Eqs. (3)–(8), the surface effect makes the
boundary equations different from those of classic elasticity.

The bulk motion Eq. (2) can be expressed in the form of
standard wave equations. To that end, we set the displacement
fields as

u¼∇φþ ∇� ðψezÞ þ ∇� ð∇� χezÞ ð9Þ
where φ, ψ and χ are potential functions, and ez is the unit vector
along the axis of the cylinder. Combining Eq. (9) with the
geometric relation

εr ¼ ∂ur
∂r ; εrθ ¼ 1

2
1
r
∂ur
∂θ þ ∂uθ

∂r −
uθ
r

� �
;

εθ ¼ 1
r
∂uθ
∂θ þ ur

r ; εθz ¼ 1
2

1
r
∂uz
∂θ þ ∂uθ

∂z

� �
;

εz ¼ ∂uz
∂z ; εzr ¼ 1

2
∂uz
∂r þ ∂ur

∂z

� �
:

ð10Þ

and Hook's law

sij ¼ λεkkδij þ 2μεij; ð11Þ
we then find that the motion equations in the bulk can be
described in the following simple form:

∇2φ¼ 1
c2d

∂2φ
∂t2

; ð12Þ

∇2ψ ¼ 1
c2s

∂2ψ
∂t2

; ð13Þ

∇2χ ¼ 1
c2s

∂2χ
∂t2

; ð14Þ

where c2d ¼ ðλþ 2μÞ=ρ, c2s ¼ μ=ρ with ρ the density, μ and λ are the
Lame constants in the bulk.

The solutions with circular frequency ω satisfying the Eqs. (12)–
(14) can be expressed as

φ¼∑
n
½A1nF1nðαrÞ þ B1nG1nðαrÞ�eiðnθþkz−ωtÞ ð15Þ

ψ ¼∑
n
½A2nF2nðβrÞ þ B2nG2nðβrÞ�eiðnθþkz−ωtÞ ð16Þ

χ ¼∑
n
½A3nF2nðβrÞ þ B3nG2nðβrÞ�eiðnθþkz−ωtÞ ð17Þ

where α¼ jω2=c2d−k
2j1=2; β¼ jω2=c2s−k

2j1=2 with k the wavenumber,
A1n, A2n, A3n, B1n, B2n and B3n are constants to be determined, and

F1nðαrÞ ¼ JnðαrÞHðω2=c2d−k
2Þ þ InðαrÞHðk2−ω2=c2dÞ; ð18Þ

F2nðβrÞ ¼ JnðβrÞHðω2=c2s−k
2Þ þ InðβrÞHðk2−ω2=c2s Þ; ð19Þ

G1nðαrÞ ¼ YnðαrÞHðω2=c2d−k
2Þ þ KnðαrÞHðk2−ω2=c2dÞ; ð20Þ

G2nðβrÞ ¼ YnðβrÞHðω2=c2s−k
2Þ þ KnðβrÞHðk2−ω2=c2s Þ; ð21Þ

with HðÞ the Heaviside jump function, Jn and Yn the first and
second kind Bessel functions of nth order, and In and Kn the first
and second kind modified Bessel functions of nth order.
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