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H I G H L I G H T S

� The DtN-map method is extended to
research the in-plane waves in
nanoscale PNCs.

� We generalize a surface parameter
to characterize the surface/interface
effects.

� The surface/interface effects have
significant influences on the band
structures.

G R A P H I C A L A B S T R A C T

The band structures of the PNC of a square lattice of vacuum cylindrical holes in aluminum matrix
without (black) and with (red) the surface effect.
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a b s t r a c t

In the present paper, the band structures of in-plane waves propagating in two-dimensional nanoscale
phononic crystals composed of voids/inclusions in an elastic solid in square and triangular lattices are
calculated by the method based on the Dirichlet-to-Neumann map. The surface/interface effects are
taken into account due to the high surface-to-volume ratio by applying the Young–Laplace equilibrium
equation at the surface/interface. Three systems at nanoscale are calculated in details: vacuum holes in an
aluminum matrix in square and triangular lattices, aluminum cylinders in tungsten matrix in a square
lattice, and tungsten cylinders in aluminum in a square lattice. The results show that the surface/interface
effects are significant when the dimensions of the phononic crystals approach the nanometer scale.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, acoustic devices toward to miniaturization and
components of those in micro/nanometer length scale, such as micro-
and nanoelectromechanical systems (i.e. MEMS and NEMS), etc.,
received considerable attention due to the rapid development of
the information technology. When the mechanical functionality of
the advanced materials is investigated, the significant influence of the

surface/interface energy and stresses which resulted from the high
surface-to-volume ratio cannot be neglected [1–3], and most proper-
ties of the nanoscale materials and structures have been demonstrated
to be size-dependent [4]. In this case, the classical elastic continuum
theory cannot predict the mechanical behaviors of the systems cor-
rectly. Thus the surface/interface effects must be taken into account. To
this end, Gurtin et al. [5,6] established a theory of surface elasticity,
according to which the surface/interface is regarded as a negligibly
thin membrane adhered to the abutting bulks without slipping. To
date, the theory of surface elasticity has been widely used to evaluate
the effects of size-dependent phenomena for nanocomposites [7–9].
Here we particularly mention the studies in the field of wave
propagation. Wang et al. [10,11] devoted their investigations to the
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research on the diffraction of elastic waves in nanostructures con-
sidering the surface/interface effects. Hasheminejad and Avazmoham-
madi [4] indicated that the interface elasticity at nanometer length
scales can significantly alter the overall dynamic mechanical proper-
ties of nanofiber-reinforced composites.

In the past decades, phononic crystals (PNCs) [12] which are a
kind of artificial periodic structures have been drawing consider-
able attention worldwide. The distinguishing feature of PNCs is the
existence of the bandgaps where the elastic waves cannot propa-
gate through the structures. PNCs have potential applications in
acoustic filters, noise suppression, vibration isolation and design of
new acoustic devices [13,14]. Recently the fabrication and analysis
of phononic crystals at nanoscale, the so-called hypersonic pho-
nonic crystals [15–19], have been demonstrated. This provides a
new way to explore the applications in acousto-optic modulation,
electron–phonon engineering, heat management, etc. [20–25].
It has been indicated that the particular treatments of wave
propagation properties for nanoscale PNCs are necessary when
the elastic continuum theory is applied. Chen and Wang [26]
developed a transfer matrix method based on the nonlocal elastic
continuum theory to calculate the band structures of a nanoscale
HfO2–ZrO2 multilayer stack. Their results revealed that the non-
local elastic continuum solution deviated from the classical elastic
continuum one, i.e. the band structures of nanoscale PNCs are size-
dependent. Other researchers also showed that the theory of
surface elasticity might be another candidate to overcome the
limits of the classical elastic continuum theory. For instance, based
on the interface model developed by Gurtin and Murdoch [6],
Zhen et al. [27,28] extended the method of Dirichlet-to-Neumann
(DtN) map [29–31] to investigate the transverse waves propagat-
ing in two-dimensional (2D) nanoscale PNCs composed of circular
holes or inclusions and discussed the surface/interface effects in
details; Liu et al. [32] used the multiple scattering theory (MST)

[33–35] to calculate the band structures of 2D PNCs composed of
nanoscale holes in a square lattice.

In the present paper, we will extend the DtN-map method [36]
to explore the mixed in-plane wave modes propagating in two-
dimensional nanoscale phononic crystals taking into account the
surface/interface effects. Both hole/solid and solid/solid systems in
square and triangular lattices will be considered. The dependence
of the upper and lower edges of the first bandgap on the surface
moduli and the filling fraction will be analyzed. We will introduce
and generalize a surface parameter characterizing the surface/
interface effects, and discuss the influence of this parameter which
may positive or negative, on the band structures.

2. Problem formulation

At the nanoscale, we consider a 2D phononic crystal composed
of circular holes or elastic solid inclusions with radius r0 in an
isotropic elastic solid matrix in a square or triangular lattice with
the lattice constant a. Fig. 1 shows the lattice structures, the unit
cells and the corresponding first Brillouin zones. Γ1–Γ4 (or Γ1–Γ6)
represent the external edges of the square (or hexagonal) unit cell;
Γ0 denotes the surface of the hole or interface between the matrix
and the inclusion. The Cartesian coordinates ðx; yÞ and the polar
coordinates ðr; θÞ on the xy-plane are related by x¼ ðx; yÞ ¼
ðr cos θ; r sin θÞ, with the origins of the coordinates located at the
center of the unit cell.

We consider harmonic mixed in-plane elastic waves propagat-
ing in the xy-plane. Therefore all wave field quantities such as the
displacements, stresses, strains, etc. are harmonic functions of
time. The harmonic wave equations can be written as [37]

ðλj þ μjÞ∇ð∇ujÞ þ μj∇
2uj þ ρjω

2uj ¼ 0; j¼ 0;1 ð1Þ
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Fig. 1. The square lattice (a1) with the unit cell (a2) and the corresponding first Brillouin zone (a3); and the triangular lattice (b1) with the unit cell (b2) and the corresponding
first Brillouin zone (b3).
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