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a b s t r a c t

We discuss Andreev bound states appearing at the interface between two different superconductors
characterized by different nontrivial topological numbers such as one-dimensional winding numbers
and Chern numbers. The one-dimensional winding number characterizes dxy and px wave super-
conductors. The Chern number characterizes chiral superconductors. The number of interfacial bound
states at the zero-energy is equal to the difference between the topological numbers on either sides of
the Josephson junction. We also discuss relation between properties of the Andreev bound states at the
zero-energy and features of Josephson current at low temperature.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

According to the topological classification of matter [1], a number
of unconventional superconductors have been categorized in terms of
nontrivial topological numbers [2,3] such as Z2 number, Chern
number, and one-dimensional winding number. The non-
centrosymmetric superconductor [4,5] is topologically nontrivial when
the amplitude of spin-triplet helical-p wave order parameter is larger
than that of spin-singlet swave one [6]. Such superconducting phase is
characterized by a topological number Z2 ¼ 1. The transport properties
of non-centrosymmetric superconductors are qualitatively different
depending on Z2 number [7]. The spin-triplet chiral-p wave super-
conductivity in Sr2RuO4 [8,9] is characterized by Chern numbers
n¼ 71 [10]. The Chern numbers here are referred to as Thouless–
Kohmoto–Nightingale–den Nijs (TKNN) number in solid state physics
[11]. The spin-singlet chiral-d wave (n¼ 72) superconductivity has
been suggested in NaxCoO2 � yH2O [12–15], heavy fermionic com-
pounds [16,17], graphene [18], high-Tc superconductors [19,20], and
β�MNCl [21]. Unconventional dxy wave symmetry in high-Tc super-
conductors and px wave symmetry in the polar state in 3He are
characterized by the one-dimensional winding number [22,23] which
we call Sato number in this paper.

The unconventional superconductors have subgap Andreev
bound states (ABSs) at their surface [24–28], which has been known
for some time. Such surface state is responsible for unusual low
energy transport in high-Tc superconductors [29–35], chiral-p wave

superconductor [36–41]. In particular in spin-triplet superconductors,
the surface states attract much attention these days because they are
recognized as Majorana fermion bound states [42–47]. The proximity
effect of spin-triplet superconductors is known to be anomalous
because of the penetration of the Majorana bound state into a normal
metal [48,49].

Today the presence of such surface bound state is explained in
terms of the bulk-boundary correspondence of topological super-
conductivity. According to the bulk-boundary correspondence, the
number of the surface bound state at the zero-energy would be
identical to the absolute value of topological number defined in
the bulk superconductor. In fact, this prediction has been con-
firmed in a number of theoretical studies. The validity of the bulk-
boundary correspondence should be confirmed also in Josephson
junctions.

In this paper, we discuss the number of zero-energy ABS at the
interface between two superconductors belonging to different
topological class by solving the Bogoliubov–de Gennes equation
analytically. We first study the interfacial states between two
superconductors belonging to different Sato numbers. Since defi-
nition of the Sato number requires the presence of the time-
reversal symmetry (TRS) of the junction, the zero-energy ABS
appears only when the phase difference across the junction (φ) is
0 or π. At φ¼ 0 or π, we confirm that the number of the zero-
energy ABSs is equal to the difference of Sato numbers in the two
superconductors consistently with the bulk-boundary correspon-
dence. We also show that the Josephson current at the zero
temperature has large values near φ¼ 0 or π because of the
resonant tunneling through ABS at the zero-energy. Next we
confirmed that the number of zero-energy ABSs appearing at the
interface between two different chiral superconductors is equal to
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the difference in the TKNN numbers in the two superconductors.
In contrast to dxy and px cases, the ABSs at the zero-energy do not
directly affect the Josephson current between two chiral super-
conductors at low temperature. We also discuss the stability of π
state at the Josephson junctions just below superconducting
transition temperature Tc.

This paper is organized as follows. In Section 2, we discuss a
theoretical model of Josephson junction consisting two topological
superconductors. In Section 3, we study the interfacial ABS
between two superconductors characterized by different Sato
numbers. The number of the zero-energy ABS and the Josephson
effect are studied for two chiral superconductors in Section 4. We
summarize this paper in Section 5.

2. Model

Let us consider a Josephson junction consisting of two super-
conductors as shown in Fig. 1, where the electric current flows in
the x direction and the junction width in the y direction is LJ. We
apply the periodic boundary condition in the y direction and
consider the limit of LJ-∞.

The Bogoliubov–de Gennes (BdG) Hamiltonian in momentum
space reads

HBdGðkÞ ¼
ĥðkÞ Δ̂ðkÞ

−Δ̂
nð−kÞ −ĥ

nð−kÞ

2
4

3
5; ð1Þ

ĥðkÞ ¼ ξkŝ0; ξk ¼
ℏ2k2

2m
−μ; ð2Þ

where ŝj for j¼1–3 are the Pauli matrices, ŝ0 is the unit matrix in
spin space, and μ is the chemical potential. In this paper, we
consider the following pair potentials Δ̂ðγÞ
Δiŝ2 singlet s;
Δ2 cosðγÞ sinðγÞiŝ2 singlet dxy;
Δ cosðγÞŝ1 triplet px;
Δeinγ iŝ2 singlet chiral;
Δeinγ ŝ1 triplet chiral;

ð3Þ

where Δ is the amplitude of the pair potential, −π=2≤γ≤π=2 is the
angle between the direction of the quasiparticle's motion and the
x-axis as shown in Fig. 1, kx ¼ kF cos γðky ¼ kF sin γÞ is the wave-
number on the fermi surface in the x (y) direction, and kF is the
Fermi wave number. The Sato number is defined for each angle
γ and each spin sector in the presence of TRS. For spin-singlet
superconductors, the BdG Hamiltonian in Eq. (1) is block diagonal
in two Nambu space: N1 and N2. In N1, spin of electron-like
(hole-like) quasiparticle is ↑ (↓). On the other hand in N2, spin of
electron-like (hole-like) quasiparticle is ↓ (↑). In this paper, we
assume that d vector in the spin-triplet symmetry aligns along the
third axis in spin space. Under this choice, the BdG Hamiltonian in
Eq. (1) in the spin-triplet cases is also decoupled into N 1 and N2.
In Table 1, we summarized the Sato number WðγÞ for dxy and px
superconductors.

In the chiral states, n in Eq. (3) must be an even integer number
for spin-singlet symmetry, whereas it should be an odd integer for
spin-triplet symmetry. The chiral-p, -d and -f wave symmetries are
characterized by the TKNN number n¼ 71, 72 and 73, respec-
tively. The TKNN number is defined in the absence of TRS. We note
that the s wave superconductor is topologically trivial. Thus both
the Sato number and the TKNN one are always zero in the s wave
superconductor.

The energy eigen values of Eq. (1) are E¼ 7Ek;7 with

Ek;7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ jΔ7 j2

q
, Δþ ¼ ΔðγÞ, and Δ− ¼ Δðπ−γÞ. All the pair poten-

tials in Eq. (3) satisfy jΔþj ¼ jΔ−j. In such case, the wave functions
in the left and the right superconductors in N1 are obtained as
[50]

Ψ Lðx; yÞ ¼ Φ̂L

uL
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" #
aeik

e
Lx þ

vLsL−
uL

" #
be−ik

h
L x

"

þ
uL

vLsnL−

" #
Ae−ik

e
Lx þ

vLsLþ
uL

" #
Beik

h
L x

#
eikyy; ð4Þ

ΨRðx; yÞ ¼ Φ̂R

uR

vRsnRþ

" #
Ceik

e
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vRsR−
uR

" #
De−ik

h
Rx

" #
eikyy; ð5Þ

uj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1þΩj

E

� �s
; vj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1−
Ωj

E

� �s
; Ωj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−jΔjj2

q
; ð6Þ

sj7 ¼ Δj7

jΔj7 j
; Φ̂ j ¼ diagfeiφj=2; e−iφj=2g; ð7Þ

kej ¼ k2x þ
2m
ℏ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−jΔjj2

q� �1=2
; khj ¼ k2x−

2m
ℏ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−jΔjj2

q� �1=2
; ð8Þ

where j¼L (R) indicates the left (right) superconductor and φj is
the macroscopic phase of the superconductor. The coefficients A, B,
C, and D are the amplitudes of outgoing waves from the interface
and a and b are those of incoming waves. At the junction interface,
we introduce the potential barrier described by V0δðxÞ. The
boundary conditions for wave function become

Ψ Lð0; yÞ ¼ ΨRð0; yÞ; ð9Þ

−
ℏ2

2m
d
dx

ΨRðx; yÞx-0þ−
d
dx

Ψ Lðx; yÞx-0−

�
þ V0ΨRð0; yÞ ¼ 0:

�
ð10Þ

When we calculate the energy of the interfacial ABS, we put
a¼ b¼ 0. Since we seek the ABSs for jEjo jΔjj, Ψ Lðx; yÞ (ΨRðx; yÞ)
decays at x-−∞ð∞Þ. The decay length is approximately given by
the coherence length ξ0 ¼ ℏvF=ðπΔÞ with vF being the fermi
velocity. By using the boundary conditions in Eqs. (9) and (10),
we obtain the relation among A, B, C, and D as

̌
Y ½A;B;C;D�t ¼ 0,

where ½⋯�t is the transpose of ½⋯� and
̌
Y is a 4�4 matrix

x=0x

yz
LJ

γ

Superconductor Superconductor

Fig. 1. A schematic picture of the Josephson junction.

Table 1
The correspondence between pairing symmetry and the Sato number W. The
summary of the Sato number can be defined only in the presence of the time-
reversal symmetry for each direction of wave vector on the Fermi surface γ and for
each Nambu space. The Sato number of s wave case is always zero (i.e., Ws¼0)
because s-wave superconductor is topologically trivial. For spin-singlet dxy sym-
metry, the Sato number Wdxy depends also on the Nambu space indicated by N1
and N2. The Sato number for spin-triplet px wave case Wpx is always unity for all γ
and the two Nambu space. Here the superconducting phase is taken to be zero.

Angle Ws Wdxy Wpx

N1 0oγoπ=2 0 1 1
−π=2oγo0 0 −1 1

N2 0oγoπ=2 0 −1 1
−π=2oγo0 0 1 1
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