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H I G H L I G H T S

� We extend the general HEN superstructure proposed by Floudas et al., 1986.
� we compare two different reformulations, and we solve the problem globally.
� We introduce a new feature to RYSIA, the global optimizer we developed recently, called lifting partitioning.
� Among results, we obtain structures that cannot be obtained using other models (stages, etc.).
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a b s t r a c t

We present an extension of a previously presented superstructure (Floudas et al., 1986) for heat
exchanger network grassroots design. This extension is such that it includes several matches between
two streams, activates splitting control and allows for mixing temperature control. We solve this model
globally using RYSIA, a recently developed method bound contraction procedure (Faria and Bagajewicz,
2011a, 2011b, 2011c; Faria et al., 2015). We also add a new RYSIA feature called Lifting Partitioning.
Results show structures that cannot be obtained using the stages model (Yee and Grossmann, 1990) or
other similar restrictive models.

& 2016 Published by Elsevier Ltd.

1. Introduction

The problem of designing heat exchanger networks is perhaps the
oldest problem in the discipline of Process Synthesis/Process Systems
Engineering. Many articles were published and continue to be pub-
lished because, arguably, the problem continues to challenge acade-
mia and practitioners.

The latest good review is an annotated bibliography by Furman
and Sahinidis (2002). Of all this work, we specifically point to a
general superstructure for HEN design was presented by Floudas
et al. (1986), which is the starting point of our work. It consisted of
a model that included one heat exchanger between every hot and
cold stream, with connections made such that every possible
flowsheet is represented in the superstructure. The model, how-
ever, was not used in practice for a variety of reasons. First, the
MINLP solvers of the time, and many of them today, do not have
good enough feasibility steps that would guarantee at least one
local minimum (the model is non-convex) and without good initial

points it usually turns infeasible. This discouraged researchers and
practitioners. Second, the model would render some impractical
answers, product of several splitting and mixing (we illustrate this
later in this article). Third, many systems that exhibit heat transfer
bottlenecks (i.e. pinches), require that some pairs of streams
exchange heat in more than one exchanger, typically two (one
exchanger on each side of the pinch, not consecutively, of course).

As a response to the aforementioned difficulties, a model more
amenable to MINLP solvers was proposed (Yee and Grossmann,
1990), which makes a series of assumptions: it assumes isothermal
mixing and presents several stages where more than one match
between streams takes place. What made the model attractive is
that the only nonlinearity could be confined to the objective
function. The model became very popular, to the point that some
other studies followed not assuming isothermal mixing (Björk and
Weterlund, 2002) and allowing some different configurations
(Huang and Karimi, 2013). All these efforts were not able to cap-
ture some alternative structures, like several exchangers in series
on each branch of each stage. Thus, the only model that is still
capable of capturing important and useful alternatives is a
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generalized superstructure where several exchangers between
two streams can be used.

As stated, the major difficulty of all the aforementioned models
is the high level of non-convexity of the MINLP models, which not
only leads to local optima, but may also fail to produce a feasible
answer if it is not provided with good initial points. The only
alternative to these models is the use of global optimization.

The academic efforts and the available commercial software were
reviewed in our previous article (Faria et al., 2015). We only highlight
what are the options we pursue in this article: all HENmodels contain
bilinear terms consisting of flowrates multiplied by temperatures. In
addition, for HEN models, the heat transfer equations relating heat
transferred with LMTD values are nonconvex. If one uses some
rational approximations (Paterson, 1984; Chen, 1987), one can make
appropriate substitutions (Manousiouthakis and Sourlas, 1992), to
reformulate the problem using as one containing purely quadratic/
bilinear models.

In this article, we explore the use of our bound contraction pro-
cedure for global optimization (Faria and Bagajewicz, 2011a). In our
lower bound, we follow the direct partitioning procedure 1 (DPP1)
strategy for the relaxation of bilinear terms and we exploit the uni-
variate nature of the LMTD terms (or their rational equivalents), to
build relaxations that do not require the addition of new variables
(Faria et al., 2015). Finally, we also use a new concept of partitioning
additional variables that help “lift” the value of the lower bound. We
call the technique Lifting Partitioning.

The paper is organized as follows: we present the revised super-
structure model first, including mixing and splitting control con-
straints. We follow with the lower bound model. We discuss the
bound contraction strategy next, including the lifting partitioning and
the uneven interval size bound contraction procedure. We then pre-
sent results.

2. Generalized superstructure

The HEN design model of the heat exchanger network uses the
superstructure model developed by Floudas et al. (1986). In order to

describe how the HEN design model can be developed, we address a
simple network, which has one hot stream and two cold streams in
Fig. 1. Without loss of generality, we assume there are two heat
exchangers per hot/cold stream match and they are not necessarily
contiguous or in series. Fig. 1 illustrates the nature of the super-
structure for just one hot stream and two cold streams and two
exchangers per pair of streams, although the model can have many
exchangers.

In the original formulation by Floudas et al. (1986) the feasible
space is defined by nonlinear constraints, many of which are
bilinear, and other purely nonconvex functions. Bilinear functions
are included in the heat balances equations of heat exchangers and
mixers. Nonconvex functions are the part of heat exchanger area
calculations. The non-convex and bilinear MINLP model presented
in this paper differs slightly from the original formulation.

We first introduce the nomenclature for streams. They are
depicted in Fig. 2. Index i refers to hot stream and j to cold stream.
Each exchanger k has their inlet and outlet temperatures and
flowrates denoted by Thi;j;khx� in; Th

i;j;k
hx�out ; Fh

i;j;k
hx� in and Fhi;j;khx�out , res-

pectively. These inlet temperatures and flowrates are a product of
mixing a portion of the feed Fhi;j;k

in with streams from other
exchangers (i,jj,kk), f hi;jj;jkk;k. The variable f hi;j;jjk;kk represents the hot
stream from the heat exchanger (i,j,k) to split to the heat
exchanger (i,jj,kk). If kk is greater than k, there is no stream from
the heat exchanger (i,j,k) to (i,jj,kk).

We now present the equations of the model:

� Mass balances for splitters
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A¼ 0 krkkð Þ 8 i; j; k ð3Þ

Fig. 1. Heat exchanger network superstructure; two exchangers per match.
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