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H I G H L I G H T S

� Intelligently designed Sobol-ANN: A step towards online optimization of PVAc-LCB.
� Configuration of parsimonious Sobol-ANN obtained using novel MOOP formulation.
� Novel algorithm eliminates heuristic based bias towards monolayer perceptron NN.
� Parameter free ANN designing algorithm: requires only the model data as input.
� Sobol-ANN surrogate reduces 90% function evaluations; 1.5 times faster than KI.
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a b s t r a c t

Process modeling and optimization of polymerization processes with long chain branching is currently
an area of extensive research owing to the advantages and growing popularity of branched polymers. The
highly complex nature of these reaction networks results in a large set of stiff ordinary differential
equations to model them mathematically with adequate precision and accuracy. In such a scenario,
where execution time of the model is expensive, the idea of going for online optimization and control of
such processes seems to be a near impossible task. Catering these problems in the ongoing research,
optimization using surrogate model obtained from a novel algorithm is proposed in this work as a
solution. A Sobol set assisted artificial neural network replaces the computationally expensive kinetic
model of long chain branched poly vinyl acetate as the fast and efficient surrogate model. The proposed
multi-objective methodology allows the computationally expensive first principle model to determine
the configuration of the neural network, which can emulate it with maximum accuracy along with
sample size required. The algorithm introduces a logical way of designing ANN architectures where the
outperformance of multiple layer networks justifies the elimination of heuristics approach to consider
only single layer. The results of the proposed algorithm are compared with the results obtained using
Kriging interpolator based another surrogate approach, for testing, validation and scope of improvement.
The use of fast and efficient Sobol assisted ANN surrogate model makes the optimization process �10
times more efficient as compared to the case of optimization with computationally expensive kinetic
model. The proposed ANN based surrogate is nearly 1.5 times as efficient as Kriging model in terms of
number of expensive function evaluations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

An extremely beneficial and pertinent class of polymers,
namely the branched polymers, have marked a new era in the
domain of polymer science and technology in the last few decades.
Branched polymers have gained immense importance as com-
pared to their linear counter parts due to the presence of a

network structure, which affects the rheological properties in the
downstream processing (Yan et al., 1999). The industrial applic-
ability of branched polymers is such that in many cases, modified
catalysts such as metallocene and bi-functional catalysts are used
specifically to ensure branching in the reactors which otherwise
do polymerization in general (Kolodka et al., 2003; Nagasawa and
Fujimoto, 1972; Keramopoulos, 2002). Continuous endeavor is
there to build mathematical models for such reaction mechanisms
so that the operation can be optimized and controlled to harness
the maximum benefit out of the system (Krajnc et al., 2001;
Gretton-Watson et al., 2006). However, optimization of such
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reaction network based mathematical models of branched poly-
mers requires large simulation time due to the complexity
involved in the models (Mogilicharla et al., 2014).

On application of a method such as population balance to
estimate the molecular weight distribution (MWD) of the polymer,
the mathematical models comprise a large number (often few
thousands) of stiff ordinary differential equations (initial value
problems – ODE-IVPs), which may require long execution time
(say, a couple of days) to have numerical solutions (Thomas, 1998).
The approach of the moment based modeling for large system of
equations is represented in terms of leading moments of different
states of the system (Teymour and Campbell, 1994) and generally
it reduces the complexity involved. However, since the MWD of
the branches (moments) is not considered separately, the recon-
struction of the full MWD from the equations involving those
leading moments is not ensured directly with moment based
modeling. Pladis and Kiparissides (1998) have reported that this
problem can be resolved by assuming an analytical distribution
function for the full MWD and then utilizing the leading moments
to estimate the parameters appearing in the analytical function.
This method, probably the most promising and efficient one, still
remains to be computationally exorbitant when applied to highly
complex processes (Mogilicharla et al., 2015). Moreover, the opti-
mization of such models for finding the optimum operating con-
ditions calls for multi-objective optimization formulations owing
to the conflicts involved among the objective functions (Mogi-
licharla et al., 2014). The ability of evolutionary optimization
techniques to solve multi-objective optimization problems is quite
unmatched as compared to their counter classical optimization
methods (Nain and Deb, 2002). However, in order to generate a
wide spread conflicting Pareto optimal (PO) solutions, these evo-
lutionary optimization techniques require a large set of candidate
solutions (population) (Deb, 2001) for which the computationally
expensive model has to be solved repeatedly. The multiple runs of
those models necessarily cannot be avoided because any decrease
in the population number may not actually lead to a high quality
wide spread PO solutions (Deb, 2002). In such a scenario, where
the online optimization of the process remains a forlorn, surrogate
models can emulate the computationally expensive models accu-
rately using a small and limited set of sampling data originated
from the time expensive physics based model to make the opti-
mization runs faster as a result (Mitra and Majumdar, 2011).

The philosophy of surrogate models is to generate accurate
functional relationship among inputs and outputs of a given pro-
cess. The most widely used surrogate models are function
approximation models based on response surface methodology
(RSM), artificial neural networks (ANN) and Kriging interpolators
(KI) (Jin, 2005). RSMs are statistical models, which try to regress
lower order (commonly, second order) polynomial models fol-
lowed by conducting a sequence of designed experiments to guide
the optimization search in a direction of optimal response of the
objective function (Myers et al., 1989). These are one of the
extensively used surrogate models applied across various domains
(Dominguez-Perles et al., 2014; Bezerra et al., 2008; Myers et al.,
2009). Several instances of failure in capturing the local surface
utilizing lower degree polynomials led the RSM research into
dealing with higher degree polynomials. KI, which has proved its
immense scope of applicability in the areas of system identifica-
tion, parametric analysis and optimization (Guanyu Zhang et al.,
2013), geosciences (Mehdi Badel, 2011), statistics, design and
analysis of computer experiments (Jones, 2001), is yet another
popular function approximation technique. It uses Gaussian dis-
tribution functions to fit the training data with a set of parameters
which can be tuned based on the estimation of potential error in
interpolation. The interpolator predicts the output using the

weighted combinations of predictions from simple basis functions
(Jones, 2001).

On the other hand, ANNs are mathematical models, which try
to mimic the functioning of biological neural network of human
brain. They are widely acknowledged for their immense applica-
tions in pattern recognition problems, image processing (Yegna-
narayana, 1994) and many other chemical engineering applica-
tions (Betiku and Ezekiel Taiwo, 2015; Karimi and Ghaedi, 2014;
Reza Soleimania and Shoushtarib, 2013; Esmaeili and Dashtbayazi,
2014; David, 2000). The number of nodes in a single layer and the
number of layers in the network together constitute the archi-
tecture of the network. The process of designing the optimal
configuration of the network architecture of ANN often involves a
method of hit and trial. Even after fixing the architecture, deter-
mination of the number of sample points for training, always leads
to an impasse (Dua, 2010). Nuchitprasittichai and Cremaschi
(2012) developed an algorithm to determine the sample size of a
given network architecture using the K-Fold cross validation
technique. Their work has delved upon the idea that when a fixed
network topology gets trained with different number of sample
points, it results in altogether a new set of parameters and thereby
a different model. They then applied the K-Fold cross validation
technique to each model and evaluated the cross validation error
in terms of mean of deviations from each fold. The sample size
increment was obtained by starting with a smaller size and then
gradually incrementing it using incremental Latin Hypercube
Sampling (i-LHS). The increment in sample size was terminated
when the change in K-Fold error with respect to the change in
sample size attained an acceptable tolerance value. However, the i-
LHS way of incrementing the data set demands addition of new
sample points and deletion of some already existing sample points
to ensure that the newly emerged sample set conforms the latin
hypercube structure at every step of the algorithm. This work,
therefore, provides further scope of improvement in terms of
(a) reducing the computational burden involved in determining
the sample size and (b) providing balance between prediction
accuracy and network complexity while determining the sample
size. Many other researchers tried to train the weights by using the
genetic algorithm to ensure an optimum hybrid ANN while Dua
(2010) used the MINLP approach to obtain the optimal config-
uration of the neural network. On the other hand, Giri et al. (2013)
have reported a procedure where a multi-objective optimization
problem (simultaneous minimization of network complexity and
maximization of accuracy) has been formulated to come up with
an ANN topology in search of parsimonious models. However, they
have restricted their study to a single layered fixed network
topology without considering the optimal data size required to
train a model. Although it has been customary to start with a
single layered topology due to the assumption that single layered
networks with sufficient nodes can predict almost all the non-
linearity present in a data set, one cannot fix the number of layers
in the architecture based on heuristics (Roy et al., 2006; Haykin,
1994; Hagen Howard et al., 2002). This is due to the fact that a
single layer in ANN represents geometrically a hyperplane which
tries to classify the given data into two sets. If the given data is
very randomly distributed in the n-dimensional space resulting in
a linearly inseperable data, it definitely needs more than one n-
dimensional hyperplane for classification. This certainly invigo-
rates the need for exploring multi-layered neural network topol-
ogies for obtaining better accuracy. However, almost no work has
been reported in the literature that addresses these concerns of
determining a simple ANN architecture along with the sample size
required by it, which can predict results accurately with less
computational burden.

In this article, catering the aforementioned needs, the authors
propose a novel and computationally economical algorithm which
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