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H I G H L I G H T S

� A thin film deposition process is simulated using the multiscale approach.
� Models are developed to predict the statistical moments of thin film properties.
� An uncertainty analysis of the process is performed using PSEs.
� Sensitivities are obtained from data collected offline using the multiscale model.
� The model is applied as a basis of a stochastic NMPC framework.
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a b s t r a c t

This paper investigates the application of stochastic nonlinear model predictive control (NMPC) to a thin
film deposition process in the presence of model-plant mismatch while ensuring constraints at a specific
probability limit. To capture the multiscale nature of the process, the evolution of the thin film is
modelled using nonlinear partial differential equations (PDEs) embedded with lattice-based kinetic
Monte Carlo (KMC) simulations. To provide a computationally tractable closed-form expression for
online predictive control applications, model identification is performed using data collected from the
multiscale deposition model. The closed-form model predicts the expected value and the variance of the
thin film properties based on the substrate temperature during the deposition process. The parameters of
the closed-form model are determined offline employing power series expansion (PSE). The closed-form
model allows the reformulation of probabilistic constraints into their corresponding deterministic
expressions thus enabling the design of a computationally tractable stochastic NMPC. To show the
effectiveness of the approach, a shrinking horizon stochastic NMPC framework is devised to minimize
the final surface roughness while complying with actuator constraints and a probabilistic constraint on
the final film thickness.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thin film deposition is a key unit operation in the microelec-
tronics industry where advanced control strategies are required to
improve product quality specifications (Braatz et al., 2006a; Nagy
and Allgöwer, 2007). Model predictive control (MPC) provides an
effective framework employing the system model to predict the
control actions which optimize a performance index in the pre-
sence of constraints (Allgöwer et al., 2004; García et al., 1989; Qin
and Badgwell, 2003). Hence, in practice, a closed-form model is
essential for efficient and accurate forecasting of the process

behaviour (Morari and Lee, 1999). Unlike conventional feedback
controllers, the main advantage of the MPC formulation is the
ability to cope with the safety, operational or economic constraints
in the presence of model-plant mismatch (Mayne et al., 2000).
Robust formulations have been proposed to guarantee the closed-
loop performance under deterministic parameter uncertainty in
MPC frameworks (Bemporad and Morari, 1999; Mayne et al., 2006;
Zeilinger et al., 2014). Robust MPC addresses the optimal control
problems with hard constraints that should be satisfied for all
realizations of the parameter uncertainty (Lee and Yu, 1997;
Zafiriou, 1990). Such a control design, however, can be overly
conservative for realizations in the uncertainties that are more
likely to occur (Nagy and Braatz, 2004). Therefore, distributional
uncertainty analyses have been proposed where the restriction
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imposed by the bounded uncertainty description is relaxed using
probabilistic-based uncertainties (Nagy and Braatz, 2003a, 2003b).
To analyse the effect of different uncertainty descriptions on the
thin film deposition, offline optimization of the process has been
performed under bounded and probabilistic uncertainties
(Rasoulian and Ricardez-Sandoval, 2015a). In addition to dis-
tributional parameter uncertainties, the MPC formulation can be
solved with probabilistic constraints (Cannon et al., 2009; Lee,
2014; Li et al., 2002; Mesbah et al., 2014). Adopting a chance
constrained approach, stochastic MPC allows an acceptable level of
risk where the constraints are satisfied with a specific probability
of occurrence (Cannon et al., 2011; Li et al., 2008; Schwarm and
Nikolaou, 1999).

In essence, an effective MPC framework for the deposition
process requires a closed-form model that represents the complex
dynamics of the process. A comprehensive modelling of this pro-
cess requires expressions that describe the evolution of the
material at the molecular level due to interactions with the cor-
responding surroundings. The pertinent model that captures the
multiscale nature of this process typically couples lattice-based
kinetic Monte Carlo (KMC) simulations capturing the microscopic
variations with nonlinear partial differential equations (PDEs) that
describe the macro-scale phenomena (Lam and Vlachos, 2001).
Due to embedded KMC simulations, this multiscale model does
not provide a closed-form expression that is needed for real-time
model-based strategies (Christofides and Armaou, 2006). This
limitation has motivated the development of low-order models for
online control and optimization applications. Reduced-order lat-
tices have been employed in the KMC simulations to develop an
estimator for feedback control in the absence of measurements at
the micro-scale level, or as a basis to design an MPC framework
(Christofides et al., 2008; Lou and Christofides, 2004). Attention
has also been directed towards data-driven identification of low-
order models to approximate the KMC simulations for real-time
control applications (Gallivan and Murray, 2004; Middlebrooks
and Rawlings, 2007; Raimondeau and Vlachos, 2000; Varshney
and Armaou, 2008). The input–output behaviour of a coupled KMC
and finite-difference code has been employed to develop a low-
order model for a copper electrodeposition process (Rusli et al.,
2006). In another approach, the evolution of the surface mor-
phology in the deposition process is modelled by stochastic PDEs
where the parameters of the model are identified using data col-
lected from KMC simulations (Hu et al., 2009; Lou and Christo-
fides, 2006; Ni and Christofides, 2005). Moreover, coarse time-
steppers have been proposed that apply macroscopic system level
tasks to multiscale systems without explicitly developing a closed-
form expression (Armaou et al., 2004; Siettos et al., 2003). That
approach is applicable to low statistical moments of micro-
scopically evolving properties.

Additional complexity in modelling the thin film deposition
process arises due to limited experimental data available at the
fine-scale level (Ricardez-Sandoval, 2011; Vlachos, 2005). Devel-
opment of first-principle models using ab initio methods or den-
sity functional theory (DFT) calculations requires high computa-
tional costs (Li et al., 2015). DFT calculations, however, can provide
the prior estimates of the parameters in the optimal experimental
design (Braatz et al., 2006b). In parameter optimization approa-
ches, highly expensive molecular simulations can be circumvented
using low-order models developed based on power series expan-
sion (PSE) (Prasad and Vlachos, 2008; Raimondeau et al., 2003).
Despite the efforts made for parameter optimization, model-plant
mismatch has mostly been overlooked in control and optimization
of thin film deposition processes, mainly due to the computational
costs of uncertainty analysis in multiscale process systems. The
common approach for distributional uncertainty propagation is
the application of a sampling-based technique on the process

model. In a thin film deposition process, however, the current
multiscale models are computationally prohibitive to assess pro-
duct variability using the traditional sampling-based methods.
Analytical techniques such as PSE and polynomial chaos expansion
provide a practical approach to this problem since the complex
multiscale model can be approximated with a mathematical
expansion (Bahakim et al., 2014; Kumar and Budman, 2014;
Mandur and Budman, 2014; Nagy and Braatz, 2007). In the PSE,
the coefficients of the expansion consist of the sensitivities of the
outputs with respect to the uncertain parameters. Since the KMC
simulations are inherently stochastic and are not available as a
closed-form expression, the sensitivities have to be determined
numerically using average of responses from multiple simulations
(Drews et al., 2004; McGill et al., 2012). Therefore, uncertainty
analysis of multiscale system using PSEs can still be computa-
tionally intensive. Nagy and Allgöwer (2007) adopted PSEs to
develop a nonlinear model predictive control (NMPC) framework
that minimizes the end-point thin film properties in a deposition
process. In that work, the first and second-order sensitivities were
calculated using the closed-form state-space model provided
by Gallivan (2003). In our previous work, the robust optimization
of thin film epitaxial growth is performed through a PSE-based
algorithm that approximates the distribution of rates of micro-
scopic events under uncertainty. Then, using the probability dis-
tribution function (PDF) of the rates, probabilistic bounds on the
outputs are estimated (Rasoulian and Ricardez-Sandoval, 2014).
For online applications, however, that method is computationally
intractable and a closed-form model is required to predict the
controlled outputs efficiently (Rasoulian and Ricardez-Sandoval,
2015b). Therefore, an algorithm has been proposed for offline
identification of a closed-from model that predicts the controlled
outputs at a predefined probability for a robust NMPC application
(Rasoulian and Ricardez-Sandoval, 2015c). In that work, to ensure
the robust performance, hard constraints were imposed on the
MPC framework. The internal model used in the MPC algorithm is
a closed-form model that was identified offline to represent the
dynamic behaviour of system under uncertainty in the model
parameters. The identification of this model was performed such
that it predicts bounds on the outputs according to a narrow
confidence level, which must be specified a priori. To that end,
new offline identification is required in that approach to be able to
estimate the outputs at a different confidence level.

In this paper, a systematic framework is presented that enables
the identification of a closed-form model to estimate the first and
second-order statistical moments of the thin film properties. The
parameters of the closed-form model are determined offline
through PSEs developed for the multiscale model under uncer-
tainty in the model parameters. This improves on our previous
work since the conservatism imposed by the hard constraints is
reduced by imposing probabilistic (soft) constraints in the MPC.
The closed-form model identified from the algorithm proposed in
this work enables the prediction of outputs at any probability
limit. Moreover, employing this model the probabilistic constraints
in the stochastic MPC framework can be reformulated as deter-
ministic constraints, thus allowing the implementation of this
control framework for the thin film deposition process under
uncertainty in the model parameters.

The remainder of the paper is organized as follows. In Section 2,
the multiscale model of the thin film deposition process is pre-
sented. The PSE-based uncertainty propagation employed for this
process, and the required computational costs, are also presented
in this section to motivate the identification of a closed-form
model for real-time applications. Section 3 presents the algo-
rithm used in this work to develop a closed-form model that
predicts the statistical moments of the controlled outputs as a
function of the control actions during the deposition process.
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