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a b s t r a c t

Nonlocal elastic rod model is developed and applied to investigate the small-scale effect on axial

vibration of nanorods. Explicit expressions are derived for frequencies for clamped–clamped and

clamped–free boundary conditions. It is concluded that the axial vibration frequencies are highly over

estimated by the classical (local) rod model, which ignores the effect of small-length scale. Present

results can be used for axial vibration of single-walled carbon nanotubes.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, micro- and nano-scale engineering applica-
tions have taken great interest after invention of carbon
nanotubes (CNTs) by Iijima [1]. Previous studies related with
nanostructures [2–7] have shown that CNTs have good electrical
properties and high mechanical strength so they can be used for
nanoelectronics, nanodevices and nanocomposites. Since applica-
tion of molecular dynamic simulations is difficult for large-scale
systems, continuum mechanics beam and shell models are used to
study the elastic behavior of CNTs [8–12].

Rod-shaped viruses, such as tobacco mosaic viruses and M13
bacteriophage, have been utilized as biological templates in the
synthesis of semiconductor and metallic nanowires [13]. They
were also proposed as elements in the biologically inspired
nanoelectronic circuits. Vibrational modes will affect the proper-
ties of the inorganic–organic interface. As stated by Fonoberov
and Balandin [13], pure axial vibration mode can also be observed.

Axial vibration experiments can also be used to determine
elastic properties of CNT. Although flexural experiments are used
when determining Young’s modulus axial vibrations can also be
used. Nanorods can be used for microelectromechanical and
nanoelectromechanical devices. During these applications axial
external forces may act with nanorods and this leads to axial
vibration of them. Due to this fact, understanding their axial
dynamic behavior is very important task.

The effect of small length scale is considered in some of the
previous studies [8,9,14–17]. It is shown that homogenization of
nanolength scale structure to continuum may give some erro-
neous results. Nonlocal elasticity is first considered by Eringen
[18]. He assumed that the stress at a reference point is a functional
of the strain field at every point of the continuum. The nonlocal
Euler beam theory is modeled by Pediesson et al. [14] and
clamped beam problem is studied as an example. This important
length scale effect is used in vibration, buckling and bending of
CNTs studies [8,9,14–17]. Although there are some studies about
flexural vibration of nanorods, according to authors best knowl-
edge axial vibration of nanorods using any local/nonlocal
continuum models is not studied in the previous studies.

In the present study, an elastic rod model with and without
nonlocal effects is used to study axial vibration of nanorods. After
constructing general equation of motion nanorods with clam-
ped–clamped (C–C) and clamped–free (C–F) boundary conditions
are analyzed for different lengths, mode number and nonlocal
parameters.

2. Nonlocal rod model

Consider a nanorod of length L and diameter d. Nonlocal
constitutive relations can be given as [15]

1� ðe0aÞ2
@2

@x2

" #
tkl ¼ l�rrdkl þ m�kl (1)

where tkl is the nonlocal stress tensor, ekl is the strain tensor, l and
m are the Lame constants, a is an internal characteristic length and
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e0 is a constant. Choise of the value of parameter e0a

(in dimension of length) is crucial to ensure the validity of
nonlocal models. This parameter was determined by matching the
dispersion curves based on the atomic models [18]. For a specific
material, the corresponding nonlocal parameter can be estimated
by fitting the results of atomic lattice dynamics or experiment.

For axial vibration of thin rods Eq. (1) can be written in the
following one dimensional form:

1� ðe0aÞ2
@2

@x2

" #
txx ¼ E� (2)

where E is the modulus of elasticity. The equation of motion for
the axial vibrating rod can be obtained as

@NL

@x
¼ m

@2uðx; tÞ

@t2
(3)

where u(x,y) is the axial displacement, m is the mass per unit
length and NL is the axial force per unit length for local elasticity
and defined by

NL
¼

Z
A
sxx dA (4)

where A is the cross-sectional area of the rod and sxx is the local
stress component in the x direction. Integrating Eq. (2) with
respect to area gives the following relation:

N � ðe0aÞ2
@2

@x2
N ¼ NL (5)

where N ¼
R

Atxx dA denotes axial force per unit length for
nonlocal elasticity. Using Eqs. (3)–(5) following equations of
motion for free-vibrating axial rod in the nonlocal elasticity can be
found in terms of displacement:

EA
@2u

@x2
¼ 1� ðe0aÞ2

@2

@x2

 !
m
@2uðx; tÞ

@t2
(6)

Eq. (6) is the consistent fundamental equation of the nonlocal
rod model for axial vibration of a thin rod. When e0a ¼ 0, it is
reduced to the equation of classical rod model.

2.1. Axial vibration of nanorod with local and nonlocal rod theories

In order the study free-axial vibration of a rod Eq. (6) can be
solved for given boundary conditions. Assuming harmonic vibra-
tions and using separation of variables method, u can be written
in the following form:

uðx; tÞ ¼ FðxÞ sin ot (7)

introducing Eq. (7) into Eq. (6) gives

d2F

dx2
þ b2F ¼ 0 (8)

where related coefficients are defined as

b2
¼

O2

1� ððe0aÞ2=L2
ÞO2

O2
¼

mo2L2

EA
(9)

where O is the dimensionless frequency parameter. Solution of Eq.
(8) can be found easily in the following form:

FðxÞ ¼ A cosðbxÞ þ B sinðbxÞ (10)

To determine frequency parameter and mode shapes given in
Eq. (10) boundary conditions of axially vibrating rod should be
given. In this study, clamped–clamped and clamped–free (C–F)
boundary conditions are studied and related conditions are given

as (it should be noted that boundary conditions must be in terms
of nonlocal variables)

CC : uð0; tÞ ¼ uðL; tÞ ¼ 0

CF : uð0; tÞ ¼ NðL; tÞ ¼ 0 (11)

2.2. C–C boundary condition

Using Eq. (11) in Eq. (10) gives

A1 ¼ 0

B1 sin b ¼ 0 (12)

In order to satisfy second equation given in Eq. (12) b can be
chosen as b ¼ kp; k ¼ 1,2,y, where k is the mode number. Using
Eq. (9), following frequency parameter can be found for C–C
boundary condition:

O2
¼

ðkpÞ2

1þ ððe0aÞ2=L2
ÞðkpÞ2

(13)

Eq. (13) shows effect of nonlocal parameter e0a. A nonzero
parameter decreases non-dimensional frequency parameter.

2.3. C–F boundary condition

Following similar steps given for C–C boundary conditions,
following relations can be found for C–F case:

A2 ¼ 0

cos b ¼ 0 (14)

Choosing b ¼ (2k�1)p/4, k ¼ 1,2,y, satisfies Eq. (14). Again
Eq. (9) gives following non-dimensional frequency parameter for
C–F boundary case:

O2
¼

½ð2k� 1Þðp=2�2

1þ ððe0aÞ2=L2
Þ½ð2k� 1Þðp=2Þ�2

(15)

Again nonlocal effects and L decrease the frequency parameter
for given nonlocal parameter e0a.

3. Numerical results

To illustrate the influence of small length scale on the axial
vibration of nanorods, the ratio of local frequency to nonlocal
frequency is discussed for clamped–clamped and clamped–free
boundary conditions for different scale coefficients, mode number
and length. Variation of fundamental frequency parameter with
length of rod is given for different scale coefficients e0a for two
boundary conditions considered in Figs. 1 and 2. According to these
figures it is seen that, nonlocal solution of the frequency is smaller
than the classical (local) result due to the effect of small length
scale. Furthermore, increasing the nonlocal parameter decreases the
frequency (i.e. increases frequency ratio). The result may be
interpreted as increasing the nonlocal parameter for fixed L leads
to a decrease in the stiffness of structure. Approximately, for
LX20 nm all results converge to the local frequency. Ratio decreases
with the increase of the rod length L. It means nonlocal effects are
lost after a certain length. The reason is that, for a fixed k, the
wavelength in axial direction gets larger with increasing tube
length, which decreases the effect of the small-length scale. The
nonlocal effects are more pronounced for C–C boundary conditions
when compared with C–F boundary conditions. This result can be
explained as clamped boundary conditions have more constraints
than free ones. e0a ¼ 0 corresponds to classical solution where ratio
of classical frequency to nonlocal frequency equals to unity.
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