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H I G H L I G H T S

� We present a novel method for robust dynamic optimization via the sigma point.
� The proposed method outperforms a linearization approach for a large-scale problem.
� The method is integrated into a dynamic multi-objective optimization framework.
� The trade-off between increased robustness and decreased productivity is studied.
� A reduction in reactor performance and in the Pareto front width is observed.
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a b s t r a c t

Dynamic optimization solutions largely rely on the accuracy of the underlying mathematical models.
However, these models only represent an approximation of the real dynamic process and their predic-
tions are dependent on a set of parameter values. These parameter values can be hard to estimate exactly
(e.g., thermal conductivity) or vary over time (e.g., due to fouling) potentially leading to hazardous
situations when applying a model based optimal solution. Robust dynamic optimization deals with the
uncertainty related to these parameters in order to quantify their effect and deliver safer (i.e., more
robust) operating conditions. This paper discusses a computationally efficient robust dynamic optimi-
zation approach based on the Sigma Point method and shows how it outperforms a linearization-based
method for a nonlinear dynamic chemical vapor deposition reactor case-study with multiple uncer-
tainties. Moreover, by accounting for uncertainty a trade-off between process safety and performance of
the reactor is introduced. This aspect is cast in a multi-objective dynamic optimization framework. In
particular, it is illustrated how an increasing robustness (i.e., process safety) induces a worsening of other
investigated objective functions and results in robustified Pareto sets.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Chemical processes are often described by complex and dyn-
amic mathematical models. Model based approaches enable to
systematically devise appropriate plant designs and operational
policies via tailored simulations and the solution of well-defined
dynamic optimization problems. However, these optimal solutions
heavily rely on the model accuracy. Unfortunately, every model
suffers from inherent uncertainties due to difficulties in correctly
estimating key model parameters or to drifting of the plant from
its original conditions.

Uncertainty can appear under the form of parametric uncer-
tainty which has ideally to be accounted for in the optimization of
these processes (e.g., Sahinidis, 2004). Generally, uncertainty can
be treated based on different strategies: (i) via the formulation of
expected values and chance constraints that take into consideration
the uncertainty's probability distribution (see, e.g., Wendt et al.,
2002; Mitra, 2009; Recker et al., 2012; Li et al., 2002, 2008;
Schenkendorf et al., 2009) or, (ii) via the formulation of a worst-
case scenario optimization when the uncertainty is known to lie
within a given set, e.g., a box or ellipsoid (see, e.g., Nagy and
Braatz, 2004; Houska et al., 2012; Nagy and Braatz, 2003; Telen
et al., 2013).

Particular challenges relate in the probabilistic framework to
an integration over the probability distribution. Different variance
quantification and analysis approaches can be found for example
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in Diwekar and Kalagnanam (1997); Nagy and Braatz (2007).
In the worst-case framework, the challenges arise from the hard-
to-solve robust counterpart problem, i.e., a worst-case scenario or
min–max optimal control problem which has to be solved by
approximation strategies (see Hermanto et al., 2007 for an appli-
cation to optimal control). For example, the approximation strat-
egy adopted in Diehl et al. (2006) is based on first order Taylor
series linearization of the model with respect to the uncertainty
and the robust counterpart problem is solved with the use of
Lyapunov equations. In these cases no measurement information
is assumed, while other methodologies –which are not considered
in the current paper – make use of available measurements to
ensure robustness (Srinivasan et al., 2003).

Moreover, there is a price to pay in order to increase robu-
stness. Typically, this is reflected in a performance reduction
(Datskov et al., 2006) and an increased computational burden. This
trade-off between the nominal performance and robustness can
be investigated using multi-objective optimization (MOO). Main
groups of methods to solve multi-objective optimization problems
include (i) vector based approaches (e.g., Deb, 2001) and (ii) sca-
larization approaches (e.g., Miettinen, 1999). The former class treats
the MOO problem directly and often makes use of evolutionary
algorithms. This class of methods requires a significant amount of
function evaluations and typically cannot efficiently handle a large
number of degrees of freedom. However, a high number of suc-
cessful applications has been reported in the literature, e.g., in
Zhang et al. (2002), Sarkar et al. (2007), Rangaiah and Bonilla-
Petriciolet (2013). The latter class converts the MOO problem in a
series of parametric single objective optimization (SOO) problems.
Each of the SOO problems can be efficiently solved with fast
gradient-based optimization methods. The most common app-
roach is the classic Weighted Sum (WS). However, these methods
suffer from some intrinsic drawbacks (Das and Dennis, 1997), to
overcome them other advanced scalarization approaches are used
in this work: (i) Normal Boundary Intersection (NBI) (Das and
Dennis, 1998) and (ii) the (Enhanced) Normalized Normal Con-
straint ((E)NNC) (Messac and Mattson, 2004; Sanchis et al., 2008).
It has been shown that the integration of direct dynamic optimi-
zation methods with the latter scalarization methods leads to an
efficient solution of dynamic optimization problems with multiple
objectives (Logist et al., 2012).

In this paper the probabilistic framework is used to formulate
an approximate but computationally tractable solution approach
for robust dynamic optimization problems (RDOPs) involving exp-
ected value dynamic optimization and additional chance constraints.
The approach is based on the sigma point method (SP) (Julier and
Uhlmann, 1996), which allows the accurate approximation of the
probability distribution through any nonlinear mapping via a
sampling technique. In particular, the proposed approach is com-
pared with the linearization method used in Logist et al. (2011).
Moreover, the developed approach is incorporated in a multi-
objective dynamic optimization problem (MODOP) frame as devel-
oped in, e.g., Logist and Van Impe (2012) by explicitly including
robustness as an additional objective. This framework for robust
multi-objective dynamic optimization problems (RMODOP) finally
leads to a robustified Pareto sets (Logist et al., 2011).

The developed framework is tested for the model based multi-
objective optimization of a Chemical Vapor Deposition (CVD)
reactor case-study for the production of high-grade polysilicon.
Polysilicon consists of high purity silicon crystals, according to Del
Coso et al. (2011) up to 99.99% purity, and is mainly produced for
the micro-electronics and photo-voltaic (PV) market (Del Coso
et al., 2011). Moreover, the PV industry has been expanding in the
last years and it is expected to keep this trend in the near future
(Masson et al., 2013; Solangi et al., 2011). The amount of PV
capacity installed worldwide in 2013 has been 24% higher than

that of 2012 and by 2017 it is expected to be between 55% and
170% higher than that of 2012.

The classic way to produce crystal-grade polysilicon is via
Chemical Vapor Deposition (CVD). A thin high-purity silicon bar is
placed inside the reactor and it is used as a seed for the crystal
growth. The deposition reaction is endothermic. Higher tempera-
tures enhance the thermodynamics and the kinetics of the process
leading to higher productivity. The rods are heated by the Joule
effect, i.e., an electric current induces a heating effect due to the
electric resistance of the silicon. The Joule effect enables a fine
temperature control but excessive temperatures in the center of
the rod must be avoided at all times.

For the CVD case-study, the MODOP is formulated to quantify
the underlying trade-off between: (i) maximizing productivity
(i.e., the volume of the rods) and (ii) minimizing the energy con-
sumption. The aim is to reduce the excessive electricity con-
sumption due to the Joule heating. The RDOP deals with the
uncertainty on the emissivity and the electric conductivity of the
silicon rods.

This paper is structured as follows: Section 2 introduces the
mathematical background including the MODOP (see Section 2.1),
the RDOP formulation (see Section 2.2) and the integration of both
formulations in the RMODOP (see Section 2.3). Section 3 intro-
duces the dynamic model of the CVD reactor case-study. Then,
Section 4 presents and discusses the obtained results. Finally,
Section 5 draws the conclusions for the presented work.

2. Mathematical formulation

In this section, the mathematical formulations at the base of
this work are presented. In particular, this work is centered around
the numerical solution of dynamic optimization problems (DOPs).
This formulation is in the following subsections extended to
include multiple objectives and uncertainties:

min
xðξÞ;uðξÞ;ξf

J; ð1Þ

subject to

dx
dξ

¼ fðxðξÞ;uðξÞ; ξ;pÞ ξA ½0; ξf �; ð2Þ

0¼ bcðxð0Þ;pÞ; ð3Þ

0ZcpðxðξÞ;uðξÞ; ξ;pÞ; ð4Þ

0Zctðxðξf Þ; ξf ;pÞ: ð5Þ
Here, x are the state variables, u the time-varying control vari-
ables, p are the time-invariant model parameters. The vector f
represents the dynamic system equations (on the interval
ξA ½0;ξf �) with initial conditions given by the vector bc. In parti-
cular f can comprise Ordinary Differential Equations (ODE), Dif-
ferential Algebraic Equations (DAE) as well as Partial Differential
Equations (PDE). The vectors cp and ct indicate, respectively, path
and terminal inequality constraints on the states and controls.
Each individual objective function can consist of both Mayer
(M) and Lagrange (L) terms:

J ¼Mðxðξf Þ; ξf ;pÞþ
Z ξf

0
LðxðξÞ;uðξÞ; ξ;pÞ dξ: ð6Þ

Two main classes of methods exist to solve dynamic optimization
problems: (i) direct and (ii) indirect methods. Direct methods are
also known as “first discretize, than optimize” in contrast with
indirect methods which follow the route “first optimize, than dis-
cretize”. Indirect methods are based on the first order neces-
sary conditions for optimality and reformulate the dynamic
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