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In this paper, we show how four recently developed modeling and solution methods can be integrated to
address mixed integer programs for the scheduling of large-scale chemical production systems. The first
method uses multiple discrete time grids. The second adds tightening constraints that lower bound the
total production and number of batches for each task and material based on the customer demand, while
the third generates upper bounding constraints based on inventory and resource availability. The final
method is a reformulation that introduces a new integer variable representing the total number of
batches of a task. We apply the aforementioned methods to large-scale problems with a variety of
processing features, including variable conversion coefficients, changeovers, various storage policies,
continuous processing tasks, setups, and utilities, using a discrete-time model. We illustrate how these
methods lead to significant improvements in computational performance.
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1. Introduction

The goal of this paper is to illustrate how recently developed
solution methods for mixed-integer programming (MIP) schedul-
ing models can be applied to address large-scale problems with a
range of complex processing constraints often found in practice.
Specifically, we explore four methods: (1) a discrete-time model
that employs different time grids for each task/unit, material, and
utility to reduce the number of binary variables (Velez and
Maravelias, 2013, 2014); (2) a demand-based back-propagation
algorithm for the calculation of parameters used to generate
tightening constraints in minimization problems (Velez et al,,
2013); (3) a time- and inventory-based forward-propagation
algorithm to define parameters and tightening constraints in
maximization problems (Merchan and Maravelias, submitted for
publication) and (4) a reformulation of the basic discrete-time
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model via the introduction of a new integer variable representing
the total number of times each task runs (Velez and Maravelias,
2013).

In this paper, we show how to extend these methods to account
for industrially relevant features and then how to combine them to
address large-scale instances. We focus on problems in network
production environments, that is, environments where a task can
consume or produce multiple materials, the output of multiple
batches of the same task can be mixed (batch mixing), the output of
a single batch can be consumed by multiple downstream batches of
the same or different task (batch splitting), and there are recycle
streams. While methods (2)-(4) are applicable to both discrete-time
and continuous-time models (Merchan et al., 2013; Merchan and
Maravelias, 2014), we focus on the former because they are more
general, can be readily extended to account for a number of
processing constraints, and were recently shown to be computa-
tionally superior to continuous-time models for problems in net-
work environments (Sundaramoorthy and Maravelias, 2011).

The paper is structured as follows. In Section 2 we present
background material including the basic discrete-time formulation
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and extensions for variable conversion coefficients, changeovers,
material storage in processing units, continuous processes, and
buffer tanks. In Section 3, we summarize our solution methods,
including a discrete-time multi-grid formulation (Section 3.1), the
tightening methods based on demand (Section 3.2) and time/
inventory availability with modifications to include processes with
variable conversion coefficients (Section 3.3), and a reformulation
with an extension for changeovers (Section 3.3). Finally, in Section
4 we describe three large examples and present computational
results for different solution methods. We use lowercase italics for
indices, uppercase bold letters for sets, uppercase italics for
variables, and lowercase Greek letters for parameters.

2. Background

In this section, we present an overview of modeling and
solution advances in the area of chemical production scheduling
(Section 2.1), present the basic discrete-time state-task network
(STN) model (Section 2.2), and then discuss some extensions
(Sections 2.4-2.11).

2.1. Literature review

Scheduling problems can be solved using a variety of
approaches, including (1) simple dispatching rules; (2) rigorous
scheduling algorithms (e.g. algorithm of Carlier and Pinson, 1989);
(3) heuristic scheduling algorithms (e.g. the shifting bottleneck
procedure for job-shops Adams et al., 1988); (4) general-purpose
metaheuristics (e.g. simulated annealing); (5) constraint program-
ming and the associated constrain propagation algorithms (Baptiste
et al., 2001; Hooker, 2002); (6) timed automata and reachability
analysis algorithms (Panek et al, 2008; Subbiah et al, 2011);
(7) mathematical programming (Mendez et al., 2006; Maravelias,
2012); and (8) hybrid methods combining two or more of the above
(Hooker, 2000; Jain and Grossmann, 2001). In this paper, we focus
on mathematical programming and specifically MIP methods.

In terms of problems, chemical production scheduling pro-
blems can be classified in terms of, among other attributes, the
production environment (Maravelias, 2012; Harjunkoski et al.,
2014). There are three major environments: (1) sequential, (2) net-
work, and (3) hybrid. In a sequential environment it is assumed
that all tasks produce/consume a single material and batch mixing
and splitting are not allowed for both the input and output
materials. In a network environment tasks can consume and
produce multiple materials, and there are no restrictions in the
way input and output materials are handled; i.e. multiple batches
of one task can be mixed or material produced by a single batch
can be consumed by multiple downstream batches of the same or
different tasks. Finally, the term hybrid is used to describe
processes that are not sequential nor network; e.g. processes
where a task consumes and/or produces multiple materials some
of which have mixing/splitting restrictions.

The various MIP scheduling models can be grouped primarily in
terms of the major entities modeled (Maravelias, 2012). To address
problems in sequential environments researchers developed the so-
called batch-based models where batches are assigned to units and
then sequenced to enforce resource constraints (Ku and Karimi,
1988; Pinto and Grossmann, 1995; Cerda et al., 1997; Castro and
Grossmann, 2005; Prasad and Maravelias, 2008; Sundaramoorthy
and Maravelias, 2008). Problems in network environments were
addressed using material-based models where materials (and
material flows and inventories) are explicitly modeled and tracked
over time (Kondili et al, 1993; Pantelides, 1994). Interestingly,
sequential environments can be viewed as a special case of the
network environment, where (1) all tasks consume/produce a

single material and (2) materials are subject to material handling
restrictions (no splitting/mixing and no recycling). Based on this
insight Maravelias and co-workers developed a modeling frame-
work that enables the representation of problems in all types of
production environments, including facilities that consist of sub-
systems of different types (Sundaramoorthy and Maravelias, 2011;
Velez and Maravelias, 2013). Furthermore, material-based models
have been extended to account for a number of processing
characteristics and constraints (Kelly and Zyngier, 2009; Castro et
al.,, 2011; Gimenez et al., 2009a, 2009b). Thus, since they can be
used to address problems in all types of environments and account
for various processing constraints, material-based models are the
focus of this paper.

Schedule optimization for network processes began with
discrete-time models where the time horizon is divided into uni-
form time intervals (Kondili et al., 1993; Pantelides, 1994; Shah et
al., 1993). These models appeared to be intractable for the solvers of
the time, so most effort to improve solution times then focused on
developing smaller models, primarily models employing continu-
ous time representations, where the location of time points is an
optimization decision (Zhang and Sargent, 1996; Schilling and
Pantelides, 1996). Continuous-time models have fewer time points
and fewer binary variables, which led to the belief that they could
be solved faster. Continuous-time models relying both on a single
grid common across all units (Mockus and Reklaitis 1999; Castro et
al., 2001; Maravelias and Grossmann, 2003; Sundaramoorthy and
Karimi, 2005) as well as different grids for each unit (lerapetritou
and Floudas, 1998; Janak et al., 2004; Susarla et al., 2010) were
developed to reduce the number of time points even further.

In terms of MIP-based solution methods, researchers in the
process systems engineering (PSE) community have proposed:
(1) tightening methods including preprocessing algorithms for
fixing binary variables (Pinto and Grossmann, 1995; Blomer and
Gunther, 2000) and generating valid inequalities (Sundaramoorthy
and Maravelias, 2008), as well as the solution of auxiliary LP and
MIP models for the generation of valid inequalities (Burkard and
Hatzl 2005; Janak and Floudas, 2008); (2) reformulations including
variable disaggregation (Sahinidis and Grossmann, 1991; Yee and
Shah, 1998) and reformulation-linearization (Janak and Floudas,
2008) techniques; (3) decomposition methods relying on the
structure of the network (Papageorgiou and Pantelides, 1996),
the hierarchy of decisions (Bassett et al., 1996; Kelly and Zyngier,
2008), the iterative solution of a simpler MIP model (Maravelias
and Grossmann, 2003), Lagrangean relaxation and decomposition
(Wu and lerapetritou, 2003; Calfa et al., 2013), and rolling horizon
approaches (Dimitriadis et al., 1997; Lin et al., 2002); and (4) algo-
rithmic enhancements including preprocessing algorithms to
generate strong valid inequalities (Velez et al., 2013; Velez and
Maravelias, 2013), and the use of heuristics (Mendez and Cerda,
2003; Roslof et al., 2001; Kopanos et al., 2010). Furthermore,
researchers have proposed decomposition methods that rely on
the integration of different solution methods, both for sequential
(Jain and Grossmann, 2001; Harjunkoski and Grossmann, 2002;
Maravelias, 2006) and network (Maravelias and Grossmann, 2004;
Roe et al., 2005) environments. Finally, there have been some
attempts to design algorithms for distributed and parallel comput-
ing (Subrahmanyam et al,, 1996; Ferris et al., 2009; Velez and
Maravelias, 2013). However, despite the efforts to develop small
and tight MIP models as well as effective solution methods, the
solution of large-scale scheduling problems in network environ-
ments remained challenging until recently.

2.2. Basic model

The structure of the process network is defined in terms of the
following sets:
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