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a b s t r a c t

It is shown that the effective carrier interaction in semiconductor thin films, which is essentially of a

non-Coulomb type, depends on the layer thickness but it is not sensitive to the form of quantum well.

As a consequence the analytical expression for the effective 2D interaction potential, obtained using the

parabolic quantum well model, can be used as a general (model-independent) formula. As an example,

we have considered the electrons localized in a quantum dot. It is demonstrated that, when the

quantum well confinement is much stronger than the lateral one, the results obtained using the 2D

approach with the effective potential are in a good agreement with the full 3D calculations.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fast development of the semiconductor technology has made
possible to fabricate the heterostructures consisting of various
thin ð � 10 nmÞ semiconductor/insulator layers (films). By insert-
ing a semiconductor between two insulator layers, one obtains a
realization of the quantum well for electrons (and holes) in the
semiconductor (see e.g. Refs. [1,2]). The thickness of this quantum
well is for an order of magnitude or more larger than the lattice
constant, allowing the effective mass approximation, but it is
small enough that at low temperatures only the quantum state
with the lowest energy e1 (the ground state of the quantum well)
is occupied by electrons (see the bottom of Fig. 1). Then, in the
direction perpendicular to the film (z-axis) the electrons in
the semiconductor perform only the zero-point motion, i.e.
essentially they can only move laterally (xy-plane) in the layer.
If we additionally confine this two-dimensional (2D) electron gas
laterally, we shall obtain the ’zero-dimensional’ system called
quantum dot (QD), see Fig. 1. For the electrons dynamics in a QD,
beside the full 3D confinement, the electron-electron (e-e)
correlations are essential (see e.g. Ref. [5,3,4] for a review).
For this reason these systems are sometimes called ’artificial
atoms’. Since the lateral size of QDs created in thin films is
typically few hundreds nanometers, i.e. for an order of magnitude
larger than the layer thickness, the concept of 2D electron gas can
be extended to these systems. As a consequence the usual
theoretical approach for QDs formed in thin film

heterostructures is two-dimensional [6,7]. A similar conclusion
holds for the electron-hole (e-h) bound systems (excitons) created
in such layers. If the exciton Bohr radius is much larger than the
thickness d (the so-called strong confinement regime) the 2D
approximation may be satisfactory [1,2]. The 2D approach, of
course, breaks down when the effective lateral confinement
becomes comparable to the perpendicular one. Then the full
three-dimensional (3D) approach becomes necessary [10,11].
In typical samples, however, the thickness effects can be
included either using the full 3D approach (see e.g. Ref. [12] for
two-electron QDs) or through the effective e-e (or e-h) interaction
within the 2D model (the quasi-3D model, see below).
A modification of the latest approximation when the interaction
between electrons keeps the Coulomb-type form, the so-called
effective charge approximation, has been considered recently in
the case of two-electron QDs [13,10].

2. Quantum well models and the probability distribution for
the zero point motion

Certainly, the simplest quantum well models are: (i) the one-
dimensional (1D) infinite square well (the hard wall model)

V? ¼
0; jzjod=2

1; jzjZd=2;

(
ð1Þ

where d is the layer thickness, and (ii) the parabolic well
V? ¼ 1

2 m�o2
?z2 (linear harmonic oscillator), where m� and o?

are the electron (hole) effective mass and the perpendicular
characteristic frequency, respectively. These two potentials can be
understood as the hard/soft wall limiting cases keeping in mind
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that a more realistic model may have a form between (i) and (ii)
(see Fig. 2a). The hard wall model is widely used because it is able
to describe thickness effects in the majority of typical samples.
Contrary, the parabolic one corresponds rather to specific samples
based, for example, on GaAs=AlxGa1�xAs heterostructures where
the parabolic shape is caused by the varying Al content x along the
growth direction (z-axis) [8,9]. From the mathematical point of
view, however, the second model is more suitable because in
many cases it provides analytical solutions (particularly for QDs
where the lateral confinement is also parabolic). For this reason in
this paper we inspect the applicability of the parabolic model for
typical samples, too, and compare the results obtained in these
two (i/ii) cases. Unfortunately, there is no general relation
between the parameter o? and the layer thickness d. Namely,
one fixed value for o? can be used only in a restricted energy
domain. In the following we show how the value o? can be
estimated from the layer thickness d, under the assumption that
electrons occupy only the ground state of the well.

The period of classical motion for a particle of the mass m� and
energy e confined in the square well defined by Eq. (1) is
T ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�=e

p
. Thus, the frequency of this periodic motion is

o¼ 2p=T ¼ ðp=dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e=m�

p
. Since the lowest energy level in the 1D

infinite square well is e1 ¼ p2‘ 2=ð2m�d2Þ, the associated fre-
quency will be

o1 ¼
p2‘
m�d2

ð2Þ

and we can write e1 ¼
1
2‘o1. Clearly, if we choose in the parabolic

model the parameter o? ¼o1, two models will be characterized
by the same ground state energy. Besides, for this choice, the

probability distributions jjðzÞj2, where jðzÞ are the corresponding
ground state wave functions, are also similar (see Fig. 2 a).
Emphasize that the corresponding distribution for any quantum
well, which form is between the limiting cases (i) and (ii), will be
also close to these two (i/ii) distributions. An example is the
potential V? ¼ ðA=d2Þtan2ðkpz=dÞ (�d=2kozod=2k) which is for
certain values of the parameters A and k (a continuous family)
characterized by the same ground state energy e1 as the models
(i) and (ii). (Note that for A-0 and k-1 this potential reduces to
the infinite square well potential.) The latest potential, for A¼ 2
and k¼ 0:8435, and the corresponding probability distribution
are shown in Fig. 2 a (dashed lines).

Even better agreement between the probability distributions
for the models (i) and (ii) can be obtained if we choose

o? ¼
c2‘

m�d2
ð3Þ

with c� 3:85 (see Fig. 2 b). For this value the ground state
probability distribution approximately vanishes at z¼ 7d=2 in
the parabolic model, too. (In fact, the parameter c is matched
precisely to this value after introducing the screening function
below.) Note that relation (3) finally reduces to d¼ cz0, where
z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ =m�o?

p
is the harmonic oscillator characteristic length.

A disadvantage is that the ground state energy in the latest case
overestimates the square well value, i.e. 1

2‘o?4
1
2‘o1 (see Fig. 2

b). However, since for small d the electrons occupy only the
lowest level of the quantum well (at least at low temperatures),
this zero-point-motion energy will produce only a constant
energy shift in the total energy.

3. Dynamical screening

Another, less trivial, effect of the sample thickness is the
reduction (dynamical screening) of the Coulomb interaction
(e-e/e-h) comparing to that in the pure 2D model [13]. In the
following we show that, if the condition (3) holds, the considered
two models give almost identical screening rates.

In order to justify this statement let us consider N electrons in
a semiconductor layer, which are additionally confined laterally
by a parabolic trap with the characteristic frequency o05o?, i.e.
consider an anisotropic axially symmetric QD (see Fig. 1). If we
add, besides, a perpendicular magnetic field the lateral confine-
ment remains the parabolic, but with the effective frequency
O¼ ðo2

0þo2
L Þ

1=2 which depends on magnetic field through the
Larmor frequency oL ¼ eB=2m�. Another effect of the field is
the constant term �oLLz in the Hamiltonian, where Lz ¼

P
ilzi

is
the z-projection of the total angular momentum and lzi

are the
projections of the individual electrons angular momenta. In
principle the lateral and perpendicular motions may be coupled
by the confining potential [14]. However, for the sake of simplicity
we shall assume that this coupling can be neglected. Then the
corresponding 3D Hamiltonian (using cylindrical coordinates)
reads

H¼
XN

i ¼ 1

p2
ri

2m�
þ

l2zi

2m�r2
i

þ
1

2
m�O2r2

i �oLlzi

 !
þ
XN

i ¼ 1

p2
zi

2m�
þV?ðziÞ

 !
þVC ;

ð4Þ

where ri ¼ ðx
2
i þy2

i Þ
1=2, ji ¼ arctanðyi=xiÞ, zi are the i-th electron

coordinates and pri
, pji
� lzi

=ri, pzi
are the conjugated momenta.

In that case the coupling between the lateral and perpendicular
motions comes only from the Coulomb term describing the
interaction (repulsion) between electrons

VC ¼
XN

i ¼ 1

XN

j ¼ iþ1

k

rij
; ð5Þ
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Fig. 2. The ground state energy levels (e1) and the corresponding probability

distributions (thick lines) for the square well (red lines) and parabolic (blue/green

lines) models in the cases: (a) when o? ¼o1 and (b) when o? is given by Eq. (3)

with c¼ 3:85. An example of the quantum well (black dashed line), which form is

between the parabolic and the square well, and the corresponding ground state

probability distribution (yellow dashed line) are shown for the case (a). (For

interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 1. The localization of a QD in the semiconductor layer of the thickness d

(bottom left) and schematic plots showing the corresponding lateral (top) and

perpendicular (right) confinements, as well as the lowest levels (thin orange/red

lines) and the probability distributions (thick orange/red lines). (For interpretation

of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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