
Size-effect on band structures of nanoscale phononic crystals

A-Li Chen, Yue-Sheng Wang n

Institute of Mechanics, Beijing Jiaotong University, Beijing 100044, China

a r t i c l e i n f o

Article history:

Received 12 June 2011

Received in revised form

27 August 2011

Accepted 30 August 2011
Available online 9 September 2011

a b s t r a c t

The scaling law does not hold when the sizes of the phononic crystals reach the nanoscale dimension

[Ramprasad et al., Applied Physics Letters 87 (2005) [9]]111101. This paper discusses the size-effect on

the band structures of nanoscale phononic crystals. The transfer matrix method based on the nonlocal

elastic continuum theory is developed to compute the band structures of a nanoscale layered phononic

crystal. Detailed calculations are performed for a nanoscale HfO2–ZrO2 multilayer stack. It is shown that

the nonlocal elastic continuum solution deviates from the classical elastic continuum one and finally

approaches the first-principle result as the thickness of each individual layer decreases. When the

thickness of each layer is much larger than several nanometers, the correspondence between the

nonlocal and classical elastic methods is shown, and the size effects can be neglected. The developed

nonlocal elastic continuum method is expected to overcome the limits of the classical continuum

description for wave propagation in phononic crystals when dimensions are in nanometer-length

scales.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Phononic crystal (PNC), which was first proposed by Kushwaha
et al. [1], is a kind of composites composed of periodic arrays of
two or more materials with different mass densities and elastic
properties. It exhibits complete band gaps in its transmission
spectra, where the propagation of acoustic or elastic waves is
strictly forbidden in all directions. By introducing defects (point,
linear or planar) to break the periodicity of the systems, it is
possible to create highly localized defect or guided modes within
the acoustic band gaps. Because of these distinguishing features,
PNCs seem to be one of the most promising candidates for design
of new acoustic devices such as wave detectors, filters, wave-
guides, transducers, acoustic lenses, acoustic interferometers, etc.
The last decades have witnessed great research interest, both
experimental and theoretical, in PNCs [2].

With the rapid development of the technology in the fields of
communication information, medical engineering, etc., the size of
acoustic devices is required to be smaller and smaller. For
instance, the gigahertz communication generally requires the
nanosized devices. The hypersonic phononic band gaps could be
used to design new thermo-electric devices, acoustic-optic
devices, nanoelectric-mechanical systems (NEMS), etc. [3–5].
Recently, the manufacture, measurement and computation of
the hypersonic PNC together with its application in manipulation

of hypersonic acoustic waves have received considerably more
and more attention [6–8].

It is known that the size-effect will become more important
and should be taken into account when a system is in the
dimension of several nanometers. Ramprasad and Shi [9] pre-
sented the phononic band structure calculations for a nanoscale
HfO2–ZrO2 multilayer stack using the first-principle method at
the atomistic level and by solving the classical elastic wave
equation at the continuum level, and found that the results from
the first-principle are quite different from those by the plane
wave expansion method based on the classical elastic (CE)
continuum theory. They pointed out that the scaling law [10],
i.e. uniformly expanding or shrinking the physical sizes of the
photonic or phononic crystals by a factor b results in the
frequency spectrum being scaled by 1/b, does not hold when
the sizes of the PNCs reach the nanoscale dimension. This implies
the size-dependence of the wave propagation behavior in a
nanosized PNC. Their study indicated the need for careful treat-
ments of wave propagation properties for PNCs at the nanometer-
length scales. Hepplestone and Shrivastava [11] also highlighted
the limits of the CE theory when they studied the hypersonic
phonon modes in periodically arranged composite semiconduc-
tors using the ball-and-spring model.

In this paper, the band structure calculations of a nanoscale
layered PNC have been implemented using the transfer matrix
method based on the nonlocal elastic (NLE) continuum theory.
The NLE continuum theory was established due to the early
efforts of Kroener and Datta [12], Kunin [13], Green and Rivlin
[14], Eringen [15] and Edelen [16] and was well summarized in
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a recent monograph by Eringen [17]. It takes into account the
effects of the long range interatomic forces, which become more
pronounced when the structure size is comparable with the
atomic constant. It explains successfully the dispersion phenom-
enon of plane waves with very high frequency propagating in a
homogeneous elastic medium discovered in phonon dispersion
experiments [17]. Recently, the NLE theory has been used to study
mechanical behaviors of nanoscale structures where the size-
effects must be taken into account [18–36].

2. Nonlocal elastic theory

Unlike the CE theory, which assumes that the stress at a point
is solely dependent on the local strain field at this point, the NLE
theory takes into account the effects of the long range interatomic
forces and supposes that the stress-state at a point is related to
the strain-state at all points of the entire body, so that the
constitutive relations are written as [17]

tklðxÞ ¼

Z
V
að9x0�x9Þsklðx

0Þdvðx0Þ, k,l¼ 123, ð1Þ

where x is the position vector, tkl are the nonlocal stress
components and skl are the stress components calculated by the
CE theory, which, for the homogeneous and isotropic medium, are
given by

sklðx
0Þ ¼ lerrðx

0Þdklþ2meklðx
0Þ, ð2Þ

with
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where l and m are Lamé constants, and uk are the displacement
components. In Eq. (1), a(9x0 �x9) is the influence function, which
is dependent on the internal characteristic length e (e.g. the
atomic lattice constant). It acquires its maximum at x0 ¼x,
attenuating with 9x0 �x9. When e-0, a(9x0 �x9) reduces to the
Dirac delta function d(9x0 �x9), and then Eq. (1) reverts to the
constitutive equations of CE theory. On the other hand, when e
approaches the external characteristic length (e.g. the wave-
length, the structure size, etc.), the NLE theory should approx-
imate discrete theories (e.g. the atomic lattice dynamics, etc.). The
influence function a(9x0 �x9) for a particular material can be
determined by matching the dispersive curves obtained from
the NLE theory with those from the first-principle theory, atomic
lattice dynamics or experiments. More detailed properties of
a(9x0 �x9) and determination of its particular form may be found
in Ref. [17]. Here for the one-dimensional problem considered in
this paper, we will choose the following simple form [17]:

að9x9,eÞ ¼ 1

2e e�ð9x9=eÞ: ð4Þ

The constitutive equation of the integral form, Eq. (1), can be
approximated by a differential one [17]:

ð1�e2r
2
Þtkl ¼ skl, ð5Þ

where r2 is the Laplace operator. The dynamic equilibrium
equations without body forces are

tkl,l ¼ r €ul, ð6Þ

with r being the mass density. Substitution of Eqs. (2), (3) and (5)
in Eq. (6) yields the following differential wave motion equation
of the NLE theory:

ðlþmÞuk,lkþmul,kk ¼ ð1�e2r
2
Þr €ul: ð7Þ

3. Problem statements and band structure calculation

A layered PNC consisting of layers (sub-cells) A with thickness
d1 and B with thickness d2 alternatively as shown in Fig. 1 will be
studied in this paper; d1 and d2 are at the nanoscale. Consider a
harmonic elastic wave propagating normally in the system.

The term e� iot where i¼
ffiffiffiffiffiffiffi
�1
p

and o is the frequency will
be suppressed throughout this paper without misunderstanding.
Then by introducing the dimensionless local coordinate

xj¼xj/d, where d¼d1þd2 and 0rxjrdj9dj=d with j¼1 and

2 representing the sub-cells A and B, respectively, Eq.(7) can be
reduced to the following simple form for the present one-dimen-
sional problem:

@2uj

@x2
j

þ
uj

$�2
j �R2

j

¼ 0, ð8Þ

where Rj¼ej/d is the ratio of the internal to external characteristic
lengths, $j¼od/cj are the non-dimensional frequencies and the

wave velocity cj ¼ cLj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðljþ2mjÞ=rj

q
for the longitudinal wave

and cj ¼ cTj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mj=rj

q
for the transverse wave.

From Eq. (8) one can obtain the dispersion equation for the
one-dimensional wave in the bulk materials A and B:

k2
j ¼

1

ðcj=ojÞ
2
�e2

j

, ð9Þ

where kj is the bulk wave number in material A (j¼1) or B (j¼2).
The internal characteristic length ej, which may vary for different
materials, can be determined by matching the dispersion curves
obtained from Eq. (9) with those from the first-principle theory,
atomic lattice dynamics, experiments, etc.

The general solution of Eq. (8) can be obtained as

ujðxjÞ ¼ A1je
�iqjxjþA2je

iqjxj , ð10Þ

where qj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$2

j =ð1�R2
j $

2
j Þ

q
.

From Eqs. (1)–(3) and Eq. (10), we can obtain the stress
component

tjðxjÞ ¼
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Next the band structures for the present layered PNC will be
calculated by following a procedure that is similar to the transfer
matrix method for the CE theory [37]. Take V¼{u,t}T as the state
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Fig. 1. Schematic diagram of a one-dimensional layered phononic crystal.
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