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a b s t r a c t

We study the dephasing of a single qubit coupled to a bosonic bath. In particular, we investigate the case

when the bath is initially prepared in a pure state known as the Schrödinger cat. In clear

contradistinction to the time evolution of an initial coherent state, the time evolutions of the purity

and the coherence factor now depend on the particular choice of the Schrödinger cat state. We also

demonstrate that the evolution of the entanglement of a two-qubit system depends on the initial

conditions in a similar way.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Controlling the dynamics of open quantum systems is of
crucial importance for the quantum information processing [1]. As
there is no general method for analyzing the non-Markovian
reduced dynamics, the exactly solvable models may provide
important and unbiased results. One of the examples is the
dephasing model [2–6] that describes an idealized case when the
quantum system does not exchange the energy with its environ-
ment. This model has recently been studied in the context of
entanglement dynamics [7–10] and the geometric phases [11]. In
particular, it has been shown in Ref. [8] that the entanglement can
effectively be controlled by an external finite bosonic quantum
system prepared in so-called non-classical states [12].

In this paper we study the complementary case when the
infinite bosonic system is initially prepared in the Schrödinger cat
state. For a finite bosonic system such a state is defined as a
superposition of two coherent states with the same amplitudes
but with phases shifted by p [12]. Here we generalize this notion
to the case of infinite dimensional systems composed of bath and
system dynamics. We show that the reduced dynamics of the
qubit depends on a specific choice of the initial Schrödinger cat
state. This is in clear contrast to the situation when the initial state
is purely coherent. It holds true not only for purity and coherence
of a single qubit but also for entanglement of a two-qubit system.

Due to the decoherence phenomenon, the assumed initial state
of an infinite bosonic bath is inaccessible in the present
experiments. However, the development of experimental techni-
ques allows one to manipulate and control systems devised from
an increasing number of particles [13]. Therefore, the results
presented in this paper may serve as a starting point for

understanding of qubits coupled to large bosonic systems
prepared in a desired quantum state. Our choice of the initial
state is motivated by the fact that multiple Schrödinger cat states
can accurately approximate any quantum state [14,15].

2. Model

We consider a qubit Q , which interacts with the environment
R. The Hamiltonian of the total system reads [2,3]

H ¼ HQ � IR þ IQ � HR þ HI; ð1Þ

where IQ and IR are identity operators in corresponding Hilbert
spaces of the qubit Q and the environment R, respectively. The
qubit Hamiltonian HQ is in the form

HQ ¼ eSz � eðj1S/1j � j � 1S/� 1jÞ; ð2Þ

where the canonical basis of the qubit is fj1S; j � 1Sg and 7e are
the energy levels of the qubit. When Q represents a particle of
spin S ¼ 1=2, the energy e is proportional to the magnitude of the
external magnetic field. The environment is assumed to be a
boson field described by the Hamiltonian

HR ¼

Z 1
0

dohðoÞayðoÞaðoÞ; ð3Þ

where the real-valued dispersion relation hðoÞ specifies
the environment, e.g., hðoÞ ¼ o describes phonon or photon
environment. The operators ayðoÞ and aðoÞ are the creation and
annihilation boson operators, respectively. The coupling of the
qubit to the environment is described by the Hamiltonian

HI ¼ j1S/1j � Hþ þ j � 1S/� 1j � H� ð4Þ

with

H7 ¼7

Z 1
0

doGðoÞ½aðoÞ þ ayðoÞ�; ð5Þ
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where the function GðoÞ is the coupling strength. Without loosing
generality, we assume that it is a real function. The Hamiltonian
(1) can be rewritten in the form

H ¼ j1S/1j � H1 þ j � 1S/� 1j � H�1; ð6Þ

H71 ¼ HR þ H77e: ð7Þ

Since there is no energy exchange (i.e. we use a non-demolition
coupling) between the qubit and the environment, our modeling
corresponds to pure dephasing. Hamiltonians like (7) have been
exploited for description of the inter-conversion of electronic and
vibrational energy [16], the electron-transfer reactions [17], a
quantum kicked rotator [18], chaotic dynamics of a periodically
driven superconducting single electron transistor [19] and the
Josephson flux qubit [20], to mention but a few.

3. Exact reduced dynamics

The model we study is exactly solvable [2,4,6], i.e., the
Schrödinger equation for the wave function jCðtÞS of the total
system can be solved exactly. Here we follow the method
presented in Ref. [9]. First, one needs to specify an initial state
jCð0ÞS. Let us assume that at the initial time t ¼ 0, the wave
function has the form

jCð0ÞS ¼ ðb1j1Sþ b�1j � 1SÞ � jRS; ð8Þ

where b1 and b�1 determine the qubit initial state and jRS is the
initial state of the environment. Then

jCðtÞS ¼ b1j1S� jc1ðtÞSþ b�1j � 1S� jc�1ðtÞS; ð9Þ

where jciðtÞS ¼ exp½�Hit�jRS ði ¼71Þ can be rewritten in the
form [9]

jc1ðtÞS ¼ e�iL1ðtÞDðgþt � gþÞe�iHRtjRS;

jc�1ðtÞS ¼ e�iL�1ðtÞDðg� � g�t Þe
�iHRtjRS: ð10Þ

The phases L1ðtÞ and L�1ðtÞ are given by

L1=�1ðtÞ ¼7et �
Z 1

0
do g2ðoÞfhðoÞt � sin½hðoÞt�g; ð11Þ

where the abbreviation gðoÞ ¼ GðoÞ=hðoÞ has been introduced.
For any function f , the notation ft stands for

ftðoÞ ¼ e�ihðoÞtf ðoÞ: ð12Þ

For an arbitrary square-integrable function f , the displacement
operator Dðf Þ is defined as [21]

Dðf Þ ¼ exp

Z 1
0

do½f ðoÞayðoÞ � f �ðoÞaðoÞ�
)
:

(
ð13Þ

The reduced qubit dynamics can be obtained for any factoriz-
able initial state of the form

Rð0Þ ¼
X

i;j¼1;�1

pijjiS/jj � jRS/Rj; ð14Þ

where Rð0Þ is the initial statistical operator of the total system and
pij are non–negative parameters. The reduced statistical operator
rðtÞ for the qubit alone can be obtained by tracing the
environment degrees of freedom, namely,

rðtÞ ¼ TrR½RðtÞ�
¼

X
i;j¼1;�1

pijjiS/jj � TrRðe
�iHitjRS/RjeiHj tÞ

¼
X

i;j¼1;�1

pijcjiðtÞjiS/jj; ð15Þ

where TrR denotes the partial tracing over the environment
variables, Hi for i ¼71 is given by Eq. (7) and cjiðtÞ ¼ /cjðtÞjciðtÞS
is a scalar product between the functions jcjðtÞS and jciðtÞS in the
environmental Hilbert space. The initial state of the qubit jy;fS is
commonly parametrized by two angles on the Bloch sphere: the
polar angle y and azimuthal angle f. Then

jy;fS ¼ cosðy=2Þj1Sþ eifsinðy=2Þj � 1S: ð16Þ

In this parametrization b1 ¼ cosðy=2Þ and b�1 ¼ eifsinðy=2Þ (see
Eq. (8)) and the initial density matrix rð0Þ of the reduced qubit
dynamics reads

rð0Þ ¼
cos2ðy=2Þ ð1=2Þsinye�if

ð1=2Þsinyeif sin2
ðy=2Þ

 !
: ð17Þ

From Eq. (15) we obtain the density matrix rðtÞ in the form

rðtÞ ¼
cos2ðy=2Þ ð1=2ÞAðtÞsinye�if

ð1=2ÞA�ðtÞsinyeif sin2
ðy=2Þ

 !
: ð18Þ

All information about influence of the environment on the qubit is
incorporated in the dephasing function AðtÞ ¼ c�1;1ðtÞ.

In the following we assume that initially the environment is in
the pure Schrödinger cat state, which is defined by the relation

jRS ¼
1ffiffiffiffi
N
p ½jaSþ eiFj � aS�; ð19Þ

where jaS ¼ DðaÞjOS is the coherent state determined by the
function a ¼ aðoÞ and jOS is the vacuum state of the bosonic
bath. The normalization constant

N ¼ 2þ 2cosðFÞexp �2

Z 1
0

dojaðoÞj2
#
:

"
ð20Þ

The phase F allows to manipulate the initial state of the
environment. In this case, the dephasing function becomes

AðtÞ ¼ N�1½/a�1ðtÞja1ðtÞSþ/a�1ðtÞj � a1ðtÞSeiF

þ/� a�1ðtÞja1ðtÞSe�iF þ/� a�1ðtÞj � a1ðtÞS� ð21Þ

with ja71ðtÞS ¼ expð�iH71tÞjaS. For the sake of brevity we
calculate the explicit form of the dephasing function AðtÞ for the
case of given coherent states jaS determined by real functions
aðoÞ only. As a first main result we find

AðtÞ ¼ N�1A0ðtÞe
�2ietfAþðtÞe

�iF þ A�ðtÞe
iF þ 2cos½4LaðtÞ�g; ð22Þ

where

LaðtÞ ¼

Z 1
0

doaðoÞgðoÞ sinðhðoÞtÞ; ð23Þ

A0ðtÞ ¼ exp �4

Z 1
0

do g2ðoÞ½1� cosðhðoÞtÞ�
)
;

(
ð24Þ

A7ðtÞ ¼ exp �2

Z 1
0

doa2ðoÞ84

Z 1
0

doaðoÞgðoÞ½1� cosðhðoÞtÞ�
)
:

(

ð25Þ

As we show next, the dephasing function AðtÞ determines certain
quantifiers describing various aspects of quantum information.

4. Purity and coherence

We start with basic quantifiers describing the information loss
of the qubit. The first one is the purity defined by

PðtÞ ¼ Trðr2ðtÞÞ ¼ 1
2ðjAðtÞj

2 � 1Þsin2yþ 1: ð26Þ
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