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a b s t r a c t

We consider a solid-state two-qubit gate subject to relaxation processes originated by transverse and

longitudinal fluctuations of the single-qubit Hamiltonians. We model each noise component as a

bosonic bath characterized by a specific power spectrum. We specialize our analysis to a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i� SWAP
p

gate

implemented by Josephson qubits in a fixed coupling scheme. For high-frequency noise spectra

extrapolated from single-qubit experiments we estimate the efficiency of the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i� SWAP
p

gate from the

decay of anti-correlations between single-qubit switching probabilities.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Quantum computation in principle provides solutions to
different problems otherwise unpractical in the classical realm
[1]. Presently, numerous implementations of the basic building
block, the qubit, have been realized. Among solid-state devices we
mention superconducting qubits in the different charge, flux,
phase and charge—phase implementations [2,3]. Actual efforts
are devoted to the realization of multi-qubit devices, aiming at
generating and controlling entanglement, a key ingredient to
boost computation performances. The first step in order to
achieve universal quantum computation is the implementation
of two-qubit gates [4–6]. The efficiency of solid state implemen-
tations is unavoidably limited by classical and quantum fluctua-
tions partly due to the control circuitry partly of microscopic
origin [7–10]. Each noise source is characterized by a specific
power spectrum. Typical figures display a low-frequency 1=f part
and a high-frequency (around the typical qubit splitting
� 10 GHz) spectrum either ohmic or approximately white [8,9].
Low- and high-frequency fluctuations have a qualitatively differ-
ent effect on the system dynamics [7].

As a result of the presence of low-frequency noise, signal
corruption specifically depends on the measurement protocol. In
repeated measurements it mainly leads to inhomogeneous broad-
ening effects responsible for the short times initial reduction of
coherent oscillations observed in high-Q single Josephson qubit
implementations [3,7]. Similar effects have been predicted also for
solid-state two-qubit gates [11].

Fluctuations resonant with the system’s eigenfrequencies lead
to relaxation processes which originate dissipation and decoher-
ence in time evolution. The dynamics of coupled qubits subject to

independent noise sources modeled as baths of harmonic
oscillators has been the subject of different recent articles. Some
analysis are based on master equation and/or perturbative
Redfield approach [12], other studies rely on influence functional
methods [13].

In the present article we study the efficiency of a two-qubitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i� SWAP
p

gate in the presence of uncorrelated Gaussian noise
sources acting on each qubit and producing both relaxation and
pure dephasing processes each characterized by its own power
spectrum. Our approach is based on standard master equation in
the secular approximation, which can be safely applied to the
physical system of our interest. We specify our analysis to affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i� SWAP
p

gate implemented with Josephson qubits in a fixed
coupling scheme and for noise figures extrapolated from mea-
surements performed on single qubit gates. The resulting
behaviors, supplemented with the prediction in the presence of
1=f noise alone [11], provide complementary indications on the
efficiency of present day solid-state two-qubit gates.

The article is organized as follows. In Section 2 we introduce
the coupled qubits model and the different noise sources. The
relevant dynamical quantities which will be used to point out the
entanglement generation and degradation are introduced in
Section 3. In the same Section we derive the elements of the
two-qubit reduced density matrix in a master equation approach.
Based on this analysis, in Section 4 we discuss the efficiency of a
Josephson i-SWAP gate in the presence of noise figures extra-
polated from single-qubit experiments. In Section 5 we draw our
conclusions.

2. Model

In order to implement a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i� SWAP
p

gate in a fixed coupling
scheme we need two resonant qubits with a transverse coupling,
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as described by the Hamiltonian ð‘ ¼ 1Þ

H0 ¼ �
O
2
sð1Þ3 � Ið2Þ �

O
2
Ið1Þ � sð2Þ3 þ

oc

2
sð1Þ1 � sð2Þ1 ; ð1Þ

where oc is the coupling strength and sðaÞ3 the pseudo-spin
operators whose eigenstates j7S (eigenvalues 71) are the
computational states of qubit a. Eigenvalues and eigenvectors of
H0 are given by

l0 ¼ �O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2=4

q
l1 ¼ �oc=2

l2 ¼ oc=2

l3 ¼ O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2=4

q
ð2Þ

j0S ¼ �sin
j
2
j ++Sþ cos

j
2
j��S

j1S ¼
1ffiffiffi
2
p ð�j þ �Sþ j � þSÞ

j2S ¼
1ffiffiffi
2
p ðj þ �Sþ j � þSÞ

j3S ¼ cos
j
2
j ++Sþ sin

j
2
j --S; ð3Þ

where sinj ¼ g=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2=4

p
Þ, cosj ¼ �1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2=4

p
with g ¼

oc=O and we have used the shorthand notation jmnS ¼ jmS1�

jnS2 m; n 2 fþ;�g. As a result of the diagonal block structure of
the Hamiltonian (1) in the computational space, the two-qubit
Hilbert space is factorized in two subspaces spanned by pairs of
eigenvectors. A system prepared in j þ �S, freely evolving for a time
tE ¼ p=2oc , yields the entangled state j þ �S� ij � þS, corre-
sponding to an

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i� SWAP
p

operation. The pair of states j1S and j2S
span the subspace where the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i� SWAP
p

gate is realized, which we
name SWAP-subspace. The subspace spanned by the pair of states
j0S and j3S is termed Z-subspace.

Solid-state qubits suffer from noise sources of different
physical origin and inducing both transverse and longitudinal
fluctuations with respect the single-qubit Hamiltonians. In
addition, each noise source is characterized by a specific power
spectrum. Here we consider the effect of relaxation processes due
to bath modes resonant with the system energy scales and
affecting independently each qubit. In order to keep trace of the
different origin of the noise sources we consider both transverse
and longitudinal components with respect to each qubit. Both
fluctuations originate relaxation processes on the coupled-qubit
system. We consider independent Gaussian fluctuations modeled
as baths of harmonic oscillators, which couple to the qubit via the
interaction term

HI ¼ �
1
2 ½x̂1sð1Þ1 þ ŷ1s

ð1Þ
3 � � I2 �

1
2I1 � ½x̂2sð2Þ1 þ ŷ2s

ð2Þ
3 �: ð4Þ

The collective variables x̂i, ŷi are expressed in the following
general form:

ẑ ¼
X
a
lz;aða

y
z;a þ az;aÞ

and correspond to fluctuations transverse ðx̂iÞ and longitudinal ðŷiÞ

to the uncoupled-qubits Hamiltonians (Eq. (1) for oc ¼ 0). The
free baths evolution follows from:

HE ¼
X
a;z
oz;aayz;aaz;a;

and the complete Hamiltonian reads

H ¼H0 þHI þHE: ð5Þ

The operators az;a satisfy the bosonic commutation rules
½az;a; a

y

z0 ;k� ¼ dz;z0da;k, ½az;a; az0 ;k� ¼ 0, and ½ayz;a; a
y

z0 ;k� ¼ 0. Each bath

is characterized by its power spectrum

SzðoÞ ¼
Z 1
�1

dt

2
eiot//ẑð0ÞẑðtÞ þ ẑðtÞẑð0ÞSS;

where // . . .SS denotes the equilibrium average over the
bosonic variables and we assumed //ẑð0ÞSS ¼ 0 . Experiments
on Josephson systems suggest that noise in this class of devices
exhibit either a white or ohmic power spectrum [8,9]. Later on we
will specify to these cases.

3. Relevant dynamical quantities

To test the formation of entangled states during the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i� SWAP
p

operation different quantifiers could be used [1]. In experiments
performing measurements on each qubit, convenient quantities
are the qubit 1 switching probability Pð1ÞSWðtÞ, i.e. the probability
that it will pass to the state j �S1 starting from the state j þS1;
and the probability Pð2ÞI ðtÞ of finding the qubit 2 in the initial state
j �S2. In terms of the two qubit reduced density matrix in the
eigenstate basis they read

Pð1ÞSWðtÞ ¼ /� j1tr2rðtÞj �S1 ¼
1

2
½r11ðtÞ þ r22ðtÞ�

þr00ðtÞ þ ½r33ðtÞ � r00ðtÞ�sin2 j
2

þRe½r12ðtÞ� þ Re½r03ðtÞ�sinj; ð6Þ

Pð2ÞI ðtÞ ¼ /� j2tr1rðtÞj �S2 ¼
1

2
½r11ðtÞ þ r22ðtÞ�

þr00ðtÞ þ ½r33ðtÞ � r00ðtÞ�sin2 j
2

�Re½r12ðtÞ� þ Re½r03ðtÞ�sinj: ð7Þ

In the following the initial state of the system will be set to j þ �S.
For this choice, in the absence of external fluctuations, the
probabilities read:

Pð1ÞSWðtÞ ¼
1� cosoct

2
; Pð2ÞI ðtÞ ¼

1þ cosoct

2
: ð8Þ

The cyclic anti-correlation of the probabilities signals the forma-
tion of the entangled state. Evidence of these features have been
detected in a setup of two charge-phase qubits [17].

3.1. Secular master equation

The system dynamics is obtained by solving the Born–Markov
master equation for the reduced density matrix. In the system
eigenstate basis and performing the secular approximation
(whose validity will be checked later) it takes the standard form
[14]:

_r iiðtÞ ¼ �
X
mai

GimriiðtÞ þ
X
mai

GmirmmðtÞ ð9Þ

_r ijðtÞ ¼ �ði ~o ij þ
~G ijÞrijðtÞ: ð10Þ

The rates Glm, ~G ij and the frequency shifts ~o ij �oij, where
oij ¼ li � lj, depend, respectively, on the real and imaginary parts
of the Green’s functionsZ 1

0
dteiot//ẑ iðtÞẑið0ÞSS ¼

1

2
Czi
ðoÞ � i

2
Ezi
ðoÞ ð11Þ

Z 1
0

dteiot//ẑ ið0ÞẑiðtÞSS ¼
1

2
Czi
ð�oÞ þ i

2
Ezi
ð�oÞ ð12Þ
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