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a b s t r a c t

We study a resistively and capacitively shunted Josephson junction, which is driven by a combination of

time-periodic and constant currents. Our investigations concern three main problems: (A) the voltage

fluctuations across the junction; (B) the quality of transport expressed in terms of the P �eclet number;

and (C) the efficiency of energy transduction from external currents. These issues are discussed in

different parameter regimes that lead to: (i) absolute negative conductance; (ii) negative differential

conductance; and (iii) normal, Ohmic-like conductance. Conditions for optimal operation of the system

are studied.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Transport processes in periodic systems play an important role
in a great variety of everyday life phenomena. Two prominent
examples are the electric transport in metals providing a
prerequisite of modern civilization and the movement of so-
called molecular motors (like kinesin and dynein) along micro-
tubules in biological cells which are of crucial relevance for the
functioning of any higher living organism. Josephson junctions
belong to the same class of systems being characterized by a
spatially periodic structure. In the limiting case of small tunnel
contacts the mathematical description of a Josephson junction is
identical to that of a Brownian particle moving in a periodic
potential. Such models have also frequently been employed under
non-equilibrium conditions to describe Brownian ratchets and
molecular motors, see Refs. [1,2] and references therein. Of
particular importance for technological applications are ‘rocked’
thermal Brownian motors operating either in overdamped or
underdamped regimes, e.g. see in Ref. [3]. The majority of papers
on transport in periodic systems are focused on the asymptotic
long time behavior of averaged quantities such as the mean
velocity of a molecular motor, or the mean voltage drop in a
Josephson contact [4]. The main emphasis of these works lies on
formulating and exploring conditions that are necessary for the
generation and control of transport, its direction, and magnitude
as well as its dependence on system parameters like temperature
and external load. Apart from these well investigated questions
other important features concerning the quality of transport
though have remained unanswered to a large extent. The key to

these problems lies in the investigation of the fluctuations about
the average asymptotic behavior [5].

In the present paper we continue our previous studies on
anomalous electric transport in driven, resistively and capacitively
shunted Josephson junction devices [6–8]. These investigations
were focused on the current–voltage characteristics, in particular
on negative conductances. In contrast, in the present paper we
investigate the fluctuations of voltage, the diffusion processes of
the Cooper pair phase difference across a Josephson junction as
well as the energetic performance of such a device.

The paper is organized as follows. In the next section, we
briefly describe the Stewart–McCumber model for the dynamics
of the voltage across a junction. In Section 3, we study voltage
fluctuations, phase difference diffusion, and the efficiency of the
device. Conclusions are contained in Section 4.

2. Model of resistively and capacitively shunted Josephson
junction

The Stewart–McCumber model describes the semi-classical
regime of a small (but not ultra small) Josephson junction for
which a spatial dependence of characteristics can be neglected.
The model contains three additive current contributions: a Cooper
pair tunnel current characterized by the critical current I0, a
normal (Ohmic) current characterized by the normal state
resistance R and a displacement current due to the capacitance
C of the junction. Thermal fluctuations of the current are taken
into account according to the fluctuation–dissipation theorem and
satisfy the Nyquist formula associated with the resistance R. The
quasi-classical dynamics of the phase difference f ¼ fðtÞ between
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the macroscopic wave functions of the Cooper pairs on both sides
of the junction is described by the following equation [9,10]:

‘
2e

C €f þ
‘
2e

1

R
_f þ I0 sinðfÞ ¼ Id þ Ia cosðOt þj0Þ þ xðtÞ; ð1Þ

where the dot denotes the differentiation with respect to time, Id

and Ia are the amplitudes of the applied direct (dc) and alternating
(ac) currents, respectively, O is the angular frequency and j0

defines the initial phase value of the ac-driving. The noise term
xðtÞ takes into account effects of thermal equilibrium fluctuations
and is related to the Johnson noise associated with the resistor R.
Such thermal fluctuations are usually modeled by zero-mean
Gaussian white noise and according to the fluctuation–dissipation
theorem of second kind [11] its correlation function has the form
(for details see Ref. [9, Section 6.4]): /xðtÞxðsÞS ¼ ð2kBT=RÞdðt � sÞ,
where kB is the Boltzmann constant and T is temperature of the
system.

The limitations of the Stewart–McCumber model and its range
of validity are discussed e.g. in Ref. [10, Sections 2.5 and 2.6].
There are various other physical systems that are described by
Eq. (1). A typical example is a Brownian particle moving in the
spatially periodic potential UðxÞ ¼ Uðxþ LÞ ¼ �cosðxÞ of period
L ¼ 2p, driven by a time-periodic force and a constant force [5]. In
this case, the variable f corresponds to the spatial coordinate x of
the Brownian particle and ac and dc play the role of periodic
driving and a static tilt force, respectively, acting on the particle.
Other specific systems are: a pendulum with an applied torque
[9], rotating dipoles in external fields [12,13], superionic con-
ductors [14] and charge density waves [15].

It is convenient to transform Eq. (1) to a dimensionless form.
We rescale the time t0 ¼ opt, where op ¼ ð1=‘ Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC

p
is the

Josephson plasma frequency expressed by the Josephson coupling
energy EJ ¼ ð‘ =2eÞI0 and the charging energy EC ¼ e2=2C. Then Eq.
(1) takes the form [9,10]

d2f
dt02
þ g df

dt0
þ sinðfÞ ¼ i0 þ i1 cosðO1t0 þj0Þ þ

ffiffiffiffiffiffiffiffiffi
2gD

p
Gðt0Þ: ð2Þ

The dimensionless damping constant g ¼ 1=opRC is given by
the ratio of two characteristic times: t0 ¼ 1=op and the relaxation
time tr ¼ RC. This damping constant g measures the strength
of dissipation. The ac amplitude and angular frequency
are i1 ¼ Ia=I0 and O1 ¼ Ot0 ¼ O=op, respectively. The rescaled
dc strength reads i0 ¼ Id=I0. The rescaled zero-mean Gaussian
white noise Gðt0Þ possesses the auto-correlation function
/Gðt0ÞGðuÞS ¼ dðt0 � uÞ, and the noise intensity D ¼ kBT=EJ is
given as the ratio of two energies, the thermal energy and the
Josephson coupling energy (corresponding to the barrier height).

Because Eq. (2) is equivalent to a set of three autonomous first
order ordinary differential equations, the phase space of (2) is
three-dimensional. For vanishing diffusion constant, D ¼ 0, the
system becomes deterministic. The resulting deterministic non-
linear dynamics ðD ¼ 0Þ exhibits a very rich behavior ranging from
periodic to quasi-periodic and chaotic solutions in the asymptotic
long time limit. Moreover, there are regions in parameter space
where several attractors coexist. In the presence of small noise
these attractors still dominate the dynamics in the sense that
most of the time the trajectory stays close to one of these
attractors. Only rarely, transitions between the attractors take
place. So, the locally stable states of the noiseless dynamics
become metastable states in the presence of weak noise. Apart
from that, the presence of noise may also led the system come
close to deterministic unstable orbits which it may follow for
quite some time.

Strictly speaking, the deterministic regime D ¼ 0 is only
reached in the limit of zero temperature for which quantum
effects become relevant. These are not taken into account in the

classical Langevin equation (2). However, for sufficiently large
Josephson junctions a region of low temperatures exists for which
both thermal and classical fluctuations can be neglected on those
time scales that are experimentally relevant.

The averaged transport behavior is completely determined by
the current–voltage characteristic, i.e. the functional dependence
of the averaged voltage on the applied dc-strength in the
asymptotic limit of large times when all transient phenomena
have died out. To obtain this current–voltage characteristic, we
numerically simulated 103 solutions of Eq. (2) from which we
estimated the stationary dimensionless voltage defined as

v ¼ / _fðt0ÞS; ð3Þ

where the brackets denote averages: (i) over the initial conditions
ðfð0Þ; _fð0Þ;j0Þ according to a uniform distribution on the cube
ffð0Þ 2 ½0;2p�; _fð0Þ 2 ½�2;2�;j0 2 ½0;2p�g; (ii) over realizations of
thermal noise Gðt0Þ; and (iii) a temporal average over one cycle
period of the external ac-driving once the result of the first two
averages have evolved into a periodic function of time. The
stationary physical voltage is then expressed as

V ¼
‘op

2e
v: ð4Þ

For a vanishing dc-strength, i0 ¼ 0, also the average voltage must
vanish because under this condition Eq. (2) as well as the
probability distribution with respect to which the average
is performed are invariant under the transformation
ðf;j0Þ-ð�f;j0 þ pÞ. For non-zero currents i0a0, this symmetry
is broken and the averaged voltage can take non-zero values,
which typically assume the same sign as the bias current i0. Apart
from this ‘‘standard’’ behavior, a Josephson junction may also
exhibit other more exotic features, such as absolute negative
conductance (ANC) [6,7], negative differential conductance (NDC),
negative-valued nonlinear conductance (NNC) and reentrant
effects into states of negative conductance [7,8]. In mechanical,
particle-like motion terms, these exotic transport patterns
correspond to different forms of negative mobility of a Brownian
particle.

3. Transport characteristics

Apart from the averaged stationary velocity v, which presents
the basic transport measure, there are other quantities that
characterize the random deviations of the voltage about its
average v at large times such as the voltage variance

s2
v ¼ / _f

2
S�/ _fS2: ð5Þ

Here the average is performed with respect to the same
probability distribution as for v in Eq. (3). This variance
determines the range

vðt0Þ 2 ðv� sv; vþ svÞ ð6Þ

of the dimensionless voltage vðt0Þ ¼ _fðt0Þ in which its actual value
is typically found. Therefore the voltage may assume the opposite
sign to the average voltage v if sv4v.

In order to quantify the effectiveness of a device in terms of the
power output at a given input, several measures have been
proposed in the literature [16–21]. Here we discuss two of them,
which yield consistent results. For the systems described by
Eq. (2), the efficiency of energy conversion is defined as the ratio of
the power P ¼ i0v done against an external bias i0 and the input
power Pin [22,23],

ZE ¼
ji0vj

Pin
; ð7Þ
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