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a b s t r a c t

We have obtained the lattice parameter profiles for Ge/Si (11 n) and InAs/GaAs (11 n) heterostructures

using the elasticity continuum theory in the linear approximation. In our model we assume that a small

fraction of the substrate participates in the heterostructures relaxation in the non-rigid approximation.

Minimization of the free energy by the Euler–Lagrange method allows us to predict the evolution of the

lattice parameter with the film coverage. A sigmoidal-like law for the lattice parameter profile is

observed in the rigid and non-rigid approximations. This behaviour is qualitatively similar to that

obtained for lower Miller indices in Ge/Si and InAs/GaAs heterostructures. As the aspect ratio changes,

we observed a significant dependence of the lattice parameter slope basically for higher aspect ratio

values. Therefore, the difference in the depletion parameter does not sensitively affect the lattice

parameter changes for higher aspect ratios in some range of investigated materials. So the aspect ratio is

seen to play a key role in relaxation mechanisms and can explain different shapes observed in the

formation of heterostructures. From these results, we have deduced that the aspect ratio and

subsequently the misfit strain and substrate orientations are the key parameters in relaxation processes,

since they define changes in the lattice parameter with the height of deposited film.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

As it is well established, one of the factors which greatly
influences the Stranski–Krastanov (S–K) growth mode in low-
dimensional strained heterostructures is the substrate orienta-
tion. A change in the Miller indices of the substrate allows us to
control the strain relaxation in the heteroepitaxial systems,
consequently inducing modifications in the onset of the S–K
growth mode, or even, in some cases, the inhibition of this mode.
For instance, RHEED and STM measurements of InAs grown on
GaAs (0 11) and GaAs (111) surfaces revealed that the growth is
always two-dimensional; i.e., layer by layer, and strain is relieved
by the formation of misfit dislocations [1]. However, when InAs
epitaxial layers were grown on high-index substrates such as
(113) and (115) GaAs, the PL spectra indicated a delay in the
three-dimensional mode onset [2]. On the other hand, appropriate
changes of substrate orientation induce different morphologies of
the islands for the same epitaxial film. This phenomenon is
observed by STM in Ge/Si (0 0 1) and Ge/Si (111) quantum dots
(QDs) [3]. In our previous works [4,5], we reported theoretical
studies to analyze the substrate orientation effects on S–K growth

mode and electronic properties of Ge/Si (111) and InAs/GaAs
(11 n) with n ¼ 1;3;5. In these works, a semiempirical height-
dependent lattice parameter was introduced as a good approx-
imation of the lattice relaxation, in agreement with some
observed experimental lattice misfit dependence with the height
of the deposited film [6,7]. This model has allowed Sfaxi et al. [8]
to explain the dependence of the formation process and strains on
the growth temperature of the InAs QDs on (113)A GaAs
substrate.

Attending to the S–K growth mode, it is known that mechan-
isms based on wetting interactions between the film and the
substrate can terminate coarsening of the surface structures.
Boundary-layer and glued wetting-layer models for the last
mechanism have been reported in the literature, where variation
of the surface energy, misfit or lattice parameter with film height
is considered [9–11]. Focusing on the lattice parameter, in order to
explain the anomalous X-ray diffraction on InAs/GaAs QDs, Schülli
et al. [6,7] performed a fit of the diffraction curves where they
assumed that the lattice parameter is allowed to relax mono-
tonically from aGaAs towards aInAs. The resulting lattice parameter
profile shows a sigmoidal-like behaviour as a function of the
height above the substrate. On the other hand, Budiman and Ruda
[12], in their analysis of the transition thickness, suggest that the
lattice parameter of the film relaxes towards its bulk-like value.
Dvurechenskii et al. [13] measured the variation of the Ge lattice
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constant during conventional MBE of Ge on Si (0 0 1) and MBE
with 100 eV Geþ pulsed ion beam actions. In both measurements,
they clearly observed a sigmoidal-like behaviour beginning from
the 2D-to-3D transition thickness and starting to saturate at
around 10 monolayers of deposited Ge layers. Etgens et al. [14]
also obtained experimentally a sigmoidal law for the lattice
parameter profile in MnAs/GaAs (111) heterostructures. In our
previous work, we reported theoretical analysis of the parameter
profile using elasticity continuum theory in Ge/Si (0 0 1) and
InAs/GaAs (0 0 1) QDs for different values of the aspect ratio,
where a sigmoidal-like law is obtained for the parameter profiles
[15]. Once we have demonstrated that the lattice profile can be
deduced from a somewhat rigorous Euler–Lagrange calculations
in Ge/Si (0 0 1) and InAs/GaAs (0 0 1) QDs, the aim of the present
work is to complete the latter calculations by extending our model
to Ge/Si (11 n) and InAs/GaAs (11 n) heterostructures for n ¼ 1, 3,
5. For this occasion, the main issue is to discuss how the change in
substrate orientation can affect or not the sigmoidal-like profile
obtained in the previous work [15] and to find out the relationship
between the rigid or the non-rigid approximations and the shape
of the lattice profile. Minimization of the free energy by the
Euler–Lagrange method leads to a couple ofsecond-order differ-
ential equations with constants coefficients for the variation of
the lattice parameter in the non-rigid approximation; the rigid
substrate approximation provides a unique differential equation.
In both rigid and non-rigid approximations, a sigmoidal-like
profile is obtained for the lattice parameters in an analogous
manner as that obtained for lower Miller indices. Through all the
calculations, we assume a coherent behaviour of the hetero-
structures at the film–substrate interface without taking into
account the kinetic aspects of growth mechanisms.

With this purpose, this paper is organized as follows. In Section
2, a brief description of the theoretical model is given, with special
attention to Euler–Lagrange method applied for the different
substrate orientations. To emphasize this, we separate our model
into two basic approximations: the non-rigid and the rigid
substrate approximations. The former was introduced to account
for the changes in the substrate materials created by the film
coverage, while the latter supposes that all the misfit strain is
located in the film during the growth process. The implementa-
tion of the model in Ge/Si (11 n) and InAs/GaAs (11 n) hetero-
structures and the comparison with Ge/Si (0 0 1) and InAs/GaAs
(0 0 1) heterostructures are discussed in Section 3. The main
remarks and conclusion of this work will be given in Section 4.

2. Theoretical model

The driving force for the self-organization processes during
heteroepitaxial growth is the misfit between the crystal lattice of
the growing layer and that of the substrate, which creates strain in
the growing layer. During growth, elastic relaxation of the internal
elastic energy may take place leading to self-organized nanostruc-
tures. Knowledge of the strain field is important for understanding
the creation of an equilibrium dot shape, among other things. In
general, two basic approaches are used both for the calculation of the
strain distribution and for the shape and island profile simulations.
These approaches consist of continuum elasticity and atomistic
simulations. In the elasticity continuum theory, the structure under
investigation is considered as an elastic continuum and the physical
parameters under study are obtained by solving the elasticity
equilibrium equations or by minimizing the elastic energy stored
in the system. For our analysis, we will focus on the minimization of
the density volume elastic energy. Let us denote by hðx; yÞ the
deposited film thickness, i.e., the height profile, where ðx; yÞ represent
the coordinates of the planar film–substrate interface. To deduce the

lattice parameter profile, we assume that all the changes are derived
from the elastic density energy and we analyze both the non-rigid
and the rigid substrate approximations. Within the elasticity
continuum theory in linear approximation [15,16], the elastic free
energy density for a thin volume layer is expressed by [17]

f e ¼
1
2Cijkluijukl (1)

where Cijkl is the stiffness tensor and uij is the strain tensor defined in
terms of the derivatives of the displacement vector u, i.e.,
uij ¼ uji ¼

1
2 ð@iuj þ @juiÞ. Indeed, as reported in our previous works,

the film and substrate displacement vector components are defined
in terms of height-dependent lattice parameters af ðzÞ and asðzÞ, with
af and as denoting their respective bulk values [5,15].

2.1. Non-rigid substrate approximation

In the non-rigid we assume that both the deposited film and
the substrate are deformed by misfit strain, so that the elastic
energy is stored in the film and in the substrate. In their
displacement vector components will figure out both the af ðzÞ

and the asðzÞ.
For any arbitrary crystal orientation, the four-rank tensor Cmnop

can be obtained from the (0 0 1) stiffness tensor Cijkl following the
relation

Cmnop ¼ amianjaokaplCijkl (2)

where aa;b ð8a;b 2 f1;2;3gÞ are the rotation matrix elements and
they are given in Ref. [5]. For cubic crystals such as InAs, GaAs, Ge
or Si, the unique non-zero stiffness constants are c11, c12 and c44.
The elastic free-energy density for any cubic system and for
orientations (111), (113) and (115) are, respectively, given by
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so that the total free energy for any orientation (11 n) (n ¼ 1, 3, 5)
can be expressed as

F11n ¼

Z Z Z
V
½f f ð1 1 nÞ þ f sð1 1 nÞ�dx dy dz (3)
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