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a b s t r a c t

The energy spectra of two electrons in low-lying excited states in a spherical quantum dot are estimated

with different barrier heights. The screened electron–electron interaction is treated through a dielectric

function and the correlation energy is calculated for different dot sizes. The two electron problem is also

treated as an effective one body problem. It is found that: (i) correlation effects are significant for

smaller dots, (ii) spatial-dependent screening function does not lead to appreciable changes in binding

energies, (iii) the effects of barrier height is appreciable on confinement and it has no effect on

correlation energy of electrons and (iv) the effect of binding energy for smaller dots is substantial when

included the correlation effect more than treated as one body problem.

& 2008 Published by Elsevier B.V.

1. Introduction

The study of semiconductor quantum dots (QDs) and nano-
crystals have been of a great interest from the experimental and
theoretical point of view in recent years [1]. The origin of the
interest lies in the size of quantization in solids and in those
objects. The electron spectrum of an ideal QD comprises a set of
discrete levels. This makes the semiconductor QD very important
in the applications of optical and transport properties of
semiconductors. In these quasi-zero-dimensional systems in
which the carrier motion is restricted to a narrow region of a
few nanometers in dimension, the correlation among the
electrons are shown to be appreciable [2]. Few electron QD have
been the subject of intensive research activities recently [3–5].
The interplay of electron–electron interaction plays a vital role in
two electrons in a QD and hence it is especially interesting. Other
physics of two electrons in semiconductor QD has been inten-
sively investigated in the past few years. Most of the calculations
use infinite barrier models with either square well potential
confinement [6] or parabolic confinement [7].

Works on finite barrier confinement with square well potential
are sparse [8]. However, the binding energies of two electrons in a
spherical QD with square well potential confinement have been
considered recently [9]. Bryant [10] studied the energy levels for
two electrons in a square quantum well box. While the effect of

dielectric mismatch between the dot material and the surround-
ing has been considered by Brus [11] and Cantele et al., [12] for the
CdS and CdSe dots, respectively, the effect of anisotropy in the
ellipsoidal-shaped QD has been thoroughly investigated in Ref. [13].
Zhu et al., [14] have pointed out the significance of size and shape
effects on electron–electron interactions in a parabolic confinement.
Bester and Zunger [15] predict interesting results in the study of
spectra of charged QD. Studies on singlet–triplet splitting, degree of
entanglement and correlation in InAs/GaAs QD molecules are
discussed in Ref. [16]. Significance of dielectric mismatch on electron
and hole addition spectra in InAs, InP and Si dots has been
investigated using a pseudo-potential formalism by Franceschetti
and Zunger [17].

Blanter et al., [18] calculated energy spectra of two-dimen-
sional two electron QD in transverse magnetic field by numerical
diagonalizing of the Hamiltonian on the basis of single-particle
eigenfunctions. Two electron system of two adjacent QD with a
two-dimensional parabolic lateral confining potential, and of two
coupled or double, spatially separated QDs (a ‘‘horizontal’’ and a
‘‘vertical’’ QD molecule), and of their behavior in an external
transverse magnetic field is studied by Kaputkin and Lozovik [19].
Coupled QD are studied by Rontani et al., [20] who showed that
the transitions between different quantum phases could be
induced through the inter-dot coupling both for a system of few
electrons (or holes) and for aggregates of electrons and holes. The
spin configurations of a spherical QD, defined by a three-
dimensional (3D) harmonic confinement potential, containing a
few Coulomb Fermi particles (electrons or holes) are studied by
Sundqvist et al., [21]. El-Said [22] has recently studied the relative
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Hamiltonian of two interacting electrons confined in a QD by the
shifted 1/N expansion method. Xie [23] has studied three
electrons confined in one-, two- and three-layer QD, by the exact
diagonalization method who investigated the ground-state elec-
tronic structures and angular momentum transitions. The electro-
nic structures of N QD molecules are investigated theoretically in
the framework of effective-mass envelope function theory by Li
and Xia [24] recently.

Transport and optical spectroscopy have revealed field-tunable
rich phases in few electron QD systems. Hence, it is important to
calculate the low-lying states in the presence of confinement and
electron–electron correlation. The electron–electron interaction
effects include the mutual Coulomb term and spin part. In the
present work, we have considered a GaAs QD embedded in a
Ga1�xAlxAs matrix with finite barriers. When two electrons are
introduced into the dot, we variationally estimate the total energy
of the system , assuming spherical well potential for confinement
for different barrier heights. The screened electron–electron
interaction is treated through the dielectric screening function
obtained by Richardson and Vinsome [25]. The two electron
problem is also treated as an effective one body problem with
the Hamiltonian. The models and calculations are provided in
Section 2, while the results and discussion are given in Section 3.

2. Theory

2.1. Single electron in a spherical QD

We consider two interacting electrons of effective mass m�,
which is 0.067m0 for GaAs, the system is described by the
Hamiltonian

H ¼
X2

j¼1

p̄2
j

2mn
þ VDðr̄jÞ (1)

where VDðr̄Þ is the barrier height given by VDðr̄Þ ¼ Q cDEgðxÞ. Qc is
the conduction band offset parameter, which is taken to be 0.658
and the band gap difference between GaAs and Ga1�xAlxAs is
given by

DEgðxÞ ¼ 1:155xþ 0:37x2 eV (2)

The units of length and energy used throughout the present paper
are the effective Bohr radius Rn

¼ _2�0=mne2 and Rn
y ¼

mne4=2�2
0_

2, where e0 is the static dielectric constant of GaAs.
The eigenfunctions for the three lowest lying states within the

dot are given by
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(5)

where N1, N2, N3, N4, N5 and N6 are normalization constants and
a1 and b1 are given by

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mnE1

p
and b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mnðVD � E1Þ

p
(6)

Matching the wavefunctions and their derivatives at the boundary
r ¼ R, the energy eigen values are determined by imposing the
boundary conditions

�
i_

mn

qc
qr
ðroRÞjr¼R ¼ �

i_
mn

qc
qr
ðrXRÞjr¼R (7)

Using Eqs. (4)–(7), we obtain

a1Rþ b1R tanða1RÞ ¼ 0 for s-states (8)

cotða2RÞ

a2R
�

1

ða2RÞ2
¼

1

b2R
þ

1

ðb2RÞ2
for p-states (9)

and

9a3R� ða3RÞ3 þ ½4ða3RÞ2 � 9� tanða3RÞ

¼ �½ð3� ða3RÞ2 tanða3RÞ � 3ða3RÞ�

�
ðb3RÞ3 þ 4ðb3RÞ2 � 9

ða3RÞ2 þ 3a3Rþ 3

" #
for d-states (10)

Solving these transcendental equations, the confined particle
energies El

(n)(n ¼ 1, 2, 3,y,l ¼ 0, 1) are obtained. Similar equations
may be obtained for other excited states, l ¼ 2,3y The confine-
ment energies of the first three states are drawn in Fig. (1).

2.2. Two electrons in a spherical QD

The Hamiltonian for this system is

H ¼
X2

j¼1

p̄2
j

2mn
þ VDðr̄jÞ

( )
þ

e2

�0jr̄1 � r̄2j
(11)

where VDðr̄Þ is expressed as above. The second term is the
Coulomb interaction energy which is calculated numerically here.

Considering s-states and p-states, the triplet state energies are
obtained using the wavefunctions c1s�1s(r̄1, r̄2), c1s�1p(r̄1, r̄2) and
c1s�2s(r̄1, r̄2), as expressed above. The electron–electron interac-
tion is included through a dielectric function which was worked
out by Richardson and Vinsome [25]. This function is given by

�ðr̄Þ ¼ ða1 þ a2e�b1r þ a3e�b2rÞ
�1 (12)
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(1) --- 1p state, x = 0.4

(2) --- 1p state, x = 0.2

(3) --- 2s state, x = 0.4

(4) --- 2s state, x = 0.2

(5) --- 1s state, x = 0.4

(6) --- 1s state, x = 0.2

Fig. 1. Variation of confined energies with the dot radius for two different

concentrations in the infinite barrier model.
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