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Spin dephasing due to a random Berry phase
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Abstract

We investigate relaxation and dephasing of an electron spin confined in a semiconductor quantum dot and subject to spin–orbit

coupling. Even in vanishing magnetic field, B ¼ 0, slow noise coupling to the electron’s orbital degree of freedom leads to dephasing of

the spin due to a random, in general non-Abelian Berry phase acquired by the spin. For illustration we first present a simple

quasiclassical description, then consider a model with two orbital states only, and finally present a perturbative quantum treatment

appropriate for an electron in a realistic (roughly parabolic, not too strongly confining) quantum dot. We further compare the effect of

different sources of noise. While at large magnetic fields phonons dominate the relaxation processes, at low fields electron–hole

excitations and possibly 1=f noise may dominate.
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1. Introduction

The demonstrations of coherent single-electron spin
control and measurement [1–3] in semiconductor quantum
dots have opened exciting perspectives for solid-state
quantum information processing with spin qubits [4].
More recent work [5–8] has revealed further potential of
spin coherence, which greatly extends the possibilities of
next-generation spintronic devices. The key behind these
emerging technologies is the long spin coherence time in
semiconductor materials. Spins, unlike orbital electron
degrees of freedom, do not couple directly to the various
sources of electric noise present in typical solid-state
environments.

Most of the traditional techniques for addressing and
manipulating spins in semiconductors have revolved
around some form of electron spin resonance (ESR), be
it through external magnetic fields [3] or effective internal

ac fields based on the spin–orbit interaction. Indeed,
spin–orbit interaction has been proposed theoretically as
a way of coherently controlling the spin of confined
electrons purely by electrical means [9–13], and important
experimental progress has been made in this direction
[14,15]. By the same token, it has long been understood
[16,17] that spin–orbit interaction is one of the main
mechanisms by which electron spins decay and lose
coherence in semiconductor heterostructures [18–21].
As we will discuss in this paper, in the particular case of

an electron confined in a quantum dot, a time-dependent
(fluctuating or controlled) electric field introduces via the
spin–orbit coupling a non-Abelian geometric phase (a
generalization of Berry phases) into the spin evolution.
This connection between spin–orbit interaction and geo-
metric phases has been noted previously in the context of
perturbative analysis of the spin decay of trapped electrons
[22]. A similar connection had been discussed for free
electrons in the presence of disorder scattering [23].
The geometric character of spin evolution under electric

fields has striking consequences both for spin–orbit
mediated spin relaxation and decoherence as well as for
coherent spin manipulation strategies. Geometric spin
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evolution under controlled gating is potentially robust,
since it is not affected by gate timing errors and certain
control voltage inaccuracies. In the case of spin decay, the
non-Abelian character of the spin precession under a noisy
electric environment results in a saturation of spin
relaxation rates at low magnetic fields [16] through a
fourth order (in the spin–bath coupling) process previously
overlooked in the literature [19,24,25]. This spin decay
mechanism, which can be called geometric dephasing,
requires two independent noise sources coupled to two
non-commuting components of the electron spin, whereby
the non-Abelian properties of the SU(2) group become
relevant.1 To second order in the spin–bath coupling we
also note that a different source of fluctuations other that
piezoelectric phonons, namely electron–hole excitations in
the metallic environment (ohmic fluctuations), dominate
the spin relaxation at low magnetic fields. The reason is the
higher density of ohmic fluctuations at low energies as
compared to phonons.

The present paper is organized as follows. In Section 2
we will present qualitatively the main concepts and
consequences of the geometric character of the electrically
induced spin precession in leading order in the ratio
between dot size to spin–orbit length, x0=lso. In Section 3
we consider a model system based on only two orbital
states of an electron with spin. This model helps to
understand the geometrical evolution of the spin. In
Section 4 we will perturbatively derive the effective
Hamiltonian for an electron in a quantum dot under a
fluctuating electric field taking into account all orbital
states. This will allow us to analyze the spin relaxation and
dephasing under realistic conditions.

2. Geometric spin precession of a strongly confined electron

Electric fields applied to a quantum dot structure induce
displacements (and possibly deformations) in the confining
potential. In the presence of spin–orbit interaction this will
lead to a peculiar geometric evolution of the spin state of
the confined electron with important consequences for the
relaxation and manipulation of the spin. We will approach
the problem by first considering the spin precession due to
a geometric phase acquired by the spin of a strongly
confined electron, when it is adiabatically transported
along a given trajectory in a 2DEG in the presence of
spin–orbit coupling.

In semiconductor 2D heterostructures the spin–orbit
coupling takes the form (_ ¼ 1 throughout this work)

Hso ¼ aðp̂yŝx � p̂xŝyÞ þ bðp̂yŝy � p̂xŝxÞ

¼
1

m
p̂k�1so r̂. ð1Þ

Here r̂=2 and p̂ are the spin and momentum operators,
while a and b are the Rashba and linear Dresselhaus
couplings, which can be lumped into the spin–orbit tensor

k�1so � m
�b �a

a b

 !
. (2)

It sets the scale for the spin–orbit length

lso �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ksoj
p

¼ ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja2 � b2j

q
Þ
�1. The effective strength

of the spin–orbit effects in a quantum dot of size x0 is in
general proportional to some power of the ratio x0=lso. In
typical GaAs/AlGaAs semiconductor heterostructures
lso�125mm, while x0�30–100 nm so that this ratio is
usually quite small, of the order of 0:02. Other materials,
such as InAs, have a much stronger spin–orbit length, in
the lso�100 nm range.
By classical intuition we can anticipate the main effect.

We consider an electron in a very strong confinement,
forced to move along a path C with trajectory RCðtÞ.
Eq. (1) suggests that the spin–orbit coupling makes the spin
precess under an effective magnetic field Bso ¼ ð

1
m
Þ p̂k�1so ,

which couples to the spin similar to a Zeeman term except
that the field depends on the electron’s momentum. It
raises the question as to what ‘‘value’’ one should use for
operator p̂. For a strongly confining potential it turns out
that we can simply substitute p̂! m _RC. Hence,

Bso ¼ _RCk�1so . (3)

From this we derive a spin precession governed by the
following SU(2) operator:

UadðtÞ ¼ T exp �i

Z t

0

dt Bso � r̂

� �

¼ P exp �i

Z
C

dRC k�1so r̂

� �
. ð4Þ

Here T and P stand for time- and path-ordering operators,
respectively. The label ‘‘adiabatic’’ in Uad refers to the
constraint of slow paths, j _RCj5x0o0, typically assumed in
most works on Berry phases [27]. As is apparent from Eq.
(4), due the peculiar dependence of Bso on the velocity _RC,
the total ‘‘geometric spin precession’’ for propagation
along a given path C depends only on the geometry of C
itself, not on the time dependence of RC.
Another line of arguments leading to this result was

pointed out in Ref. [28]. It is based on the observation that
Hso can be diagonalized to first order in x0=lso by a
canonical transformation expð�ir̂k�1so r̂Þ, which in turn
implies that in a small dot the effect of spin–orbit coupling
moving along a given path can be gauged away by a path-
dependent gauge transformation Uad that rotates the spin
just as in Eq. (4).
The evolution operator Uad is a group element in SU(2).

However, it can also be mapped onto a SO(3) rotation of a
3D solid, since both groups are isomorphic up to a sign.
The natural question arises, what is the 3D rotation
corresponding to Uad for a given path? Is there an intuitive

ARTICLE IN PRESS

1A different phenomenon, also called geometric dephasing, was

discussed in Ref. [26]. There geometric manipulations of spins in finite

magnetic fields and the presence of dissipation were considered and path-

dependent (geometric) contributions to dephasing were found.
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