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a b s t r a c t

Cyclotron resonance of magnetopolarons bound to a Coulomb impurity in a two-dimensional (2D)

parabolic quantum dot (QD) is studied within a variational calculation for all coupling strengths.

The Lee–Low–Pines–Huybrecht variational technique that was developed previously for all coupling

strengths has been extended for polarons in a magnetic field. The dependence of the cyclotron resonance

masses on the magnetic field, the confinement length, the electron–phonon coupling strength and the

Coulomb binding parameter is investigated.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

With the advancement of nanofabrication technology, it is now
possible to manufacture small zero-dimensional quantum dots
(QDs) in which a few electrons can be confined in all the three
dimensions spatially [1–3]. In such nanometer QDs, some novel
physical phenomena and potential electronic device applications
have generated a great deal of interest. The study of the impurity
states in these low dimensional structures is an important aspect
on which many theoretical and experimental works are based
[4–6]. Recently, considerable effort [7–9] has been focused on
exploring the polaron effect of QDs. The presence of a magnetic
field makes the polaron problem in QDs more interesting since its
existence means an additional confinement. Recently, Chen et al.
[10] have studied the thickness dependence of the binding energy
of an impurity bound polaron in a parabolic QD in magnetic fields
using the second-order perturbation theory. Au-Yeung et al. [11]
have investigated the combined effects of a parabolic potential and
a Coulomb impurity on the cyclotron resonance of a three-dimen-
sional (3D) bound magnetopolaron using Larsen’s perturbation
method. Zhu and Gu [12] have studied the cyclotron resonance of
magnetopolarons in a parabolic QD with a strong magnetic field
normal to the plane of the QD using the second-order Rayleigh–
Schrodinger perturbation theory.

In the weak coupling case the states are extended and perturba-
tion theory can be used, while in the other strong coupling limit,
which corresponds to localized states, adiabatic methods are
employed. Between them, variational techniques are adopted,
where certain canonical transformations called Lee–Low–Pines
(LLP) are performed and each of which has its own variational

parameters. One of these transformations was modified by Huy-
brechts [13] in order to extend this approach to all coupling
strengths. The LLPH method has been successfully carried out in
calculation of the polaronic corrections to the ground- and first-
excited states in QDs by Mukhopadhyay and Chatterjee [14].

The polaronic effects in QDs have also been examined by the
Feynman–Haken path integral method [15] in the absence of a
magnetic field. Recently, the related problem of an optical polaron
bound to a Coulomb impurity in a QD has also been considered in
the presence of a magnetic field [16–19]. By introducing a trial
wave function constructed as a direct product form of an electronic
part and a part of coherent phonons, Kandemir and Cetin [20] have
investigated the polaronic effect on the low-lying energy levels of
an electron bound to a hydrogenic impurity in a 3D anisotropic
harmonic potential subjected to a uniform magnetic field. In the
present paper our purpose is to study the cyclotron resonance of
magnetopolarons bound to a Coulomb impurity in a two-dimen-
sional (2D) parabolic QD. We shall employ the LLPH method to
obtain the ground-state (GS) and excited-state (ES) energies of
magnetopolarons embedded in 2D QD with parabolic confinement.

2. Theoretical model

We consider an electron, which is interacting with LO phonons
in an isotropic harmonic potential and a magnetic field along the
z direction. Suppose that we have a Coulomb impurity located
at the origin of the QD. In the effective mass approximation the
Hamiltonian of the electron–phonon system is given by
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where bþq ðbqÞ is the creation (annihilation) operator of an optical
phonon with a wave vector q. oLO is the LO-phonon frequency,
which is assumed to be dispersionless and o0 is the confinement
frequency of the isotropic harmonic potential. Vq is defined as
follows [21]:

Vq ¼ ið_oLO=qÞð_=2m�oLOÞ
1=4
ð4p a=VÞ1=2

Þ ð2Þ

where a is the electron–phonon coupling constant.
By using the symmetrical Coulomb gauge A¼ ð�By=2, Bx=2,0Þ

for the vector potential, Eq. (1) can be written as follows:
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where o2¼o2
1þðoc=2Þ2 with the cyclotron frequency

oc¼ eB=m�c.
In the LLPH method [13] the first LLP transformation is modified

as

U1 ¼ exp �ia
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where a is a variational parameter. Then after the second LLP
transformation [22]
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when fqðf �q Þ is the variational function, we obtain
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1 HU1U2 ð6Þ

When a¼1 this modified procedure reduces to the LLP method,
which should provide a description in the extended state limit,
while for a¼0 this approach is equivalent to the Landau–Pakar
method [23], which is valid in the adiabatic limit and will be
a useful approach in the localized state limit. Thus treating a as a
variational parameter (0oao1) one can have a consistent theory
encompassing the entire parameter space. The variational energy is
now written as

E¼/f9/09Hu90S9fS ð7Þ

where f is the electronic function to be chosen variationally and
90S is the unperturbed zero phonon state. The variational energy
then simplifies to
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where

rq ¼/f9eið1�aÞqUr9fS ð9Þ

Minimizing E with respect to f �q now yields
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and thus Eq. (8) reduces to
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2.1. The ground state

We assume that the Gaussian function approximation is still
valid in magnetic fields, where the GS electronic wave function is
chosen as

f¼
l

p1=2
e�l

2r2=29xðzÞS ð12Þ

with l being a variational parameter to be determined.
Hence the GS energy expectation becomes
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where r0 ¼ ½_=2m�oLO�
1=2 is the polaron radius, l0 ¼ ½_=m�o0�

1=2 is
the effective confinement length of the QD and t¼ ðm�oLO=_Þ

1=2

ð1�aÞ=ðalÞ is to be treated as a new variational parameter instead of
a: b¼ e2=e1 being the Coulomb binding parameter.

Thus, the GS energy of this system can be obtained by mini-
mizing Eq. (13) with respect to l and t.

2.2. The first excited state

For the first ES we may choose the electronic wave function as
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which satisfies the following orthonormal relations:
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Hence the first ES energy becomes
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Thus, the ES energy of this system can be obtained by mini-
mizing Eq. (17) with respect to l and t.

The renormalized cyclotron mass is defined to be

m�7 ¼
ocm�

o� ð18Þ

which depends on the relevant cyclotron resonance frequency

o� ¼ E17�E0

_
ð19Þ

3. Numerical results and discussion

The numerical results of the renormalized cyclotron mass for an
impurity atom with the electron–phonon interaction in a parabolic
QD versus the electron–phonon coupling constant, the applied

S.-H. Chen / Physica E 43 (2011) 1007–10101008



Download English Version:

https://daneshyari.com/en/article/1546878

Download Persian Version:

https://daneshyari.com/article/1546878

Daneshyari.com

https://daneshyari.com/en/article/1546878
https://daneshyari.com/article/1546878
https://daneshyari.com

