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a b s t r a c t

The dynamic testing of materials and components often involves predicting the propagation of stress

waves in slender rods. The present work deals with the analysis of the wave propagation characteristics of

nanorods. The nonlocal elasticity theory and also the lateral inertia are incorporated into classical/local

rod model to capture unique features of the nanorods under the umbrella of continuum mechanics theory.

The strong effect of the nonlocal scale has been obtained which leads to substantially different wave

behaviors of nanorods from those of macroscopic rods. Nonlocal rod/bar model is developed for nanorods

including the lateral inertia effects. The analysis shows that the wave characteristics are highly over

estimated by the classical rod model, which ignores the effect of small-length scale. The wave propagation

properties of the nanorod obtained from the present formulations are compared with the continuum rod

model, nonlocal second and fourth order strain gradient models, Born� K �arm �an model and the nonlocal

stress gradient model. It has also been shown that, the unstable second order strain gradient model can be

replaced by considering the inertia gradient terms in the formulations. The effects of both the nonlocal

scale and the diameter of the nanorod on spectrum curves are highlighted in the present manuscript. The

results provided in this article are useful guidance for the study and design of the next generation of

nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

A nanostructure is defined as a material system or object where at
least one of the dimensions lies below 100 nm. Nanostructures can be
classified into three different categories: zero-dimensional (0D); one-
dimensional (1D); two-dimensional (2D). 0D nanostructures are
materials in which all three dimensions are at the nanoscale. A good
example of these materials are buckminster fullerenes [1] and
quantum dots [2]. 1D nanostructures are materials that have two
physical dimensions in the nanometer range while the third dimen-
sion can be large, such as in the carbon nanotube [3]. 2D nanos-
tructures, or thin films, only have one dimension in the nanometer
range and are used readily in the processing of complimentary metal-
oxide semiconductor transistors [4] and micro-electro-mechanical
systems (MEMS) [5]. Since the focus of this work is on one-dimen-
sional nanostructures, all others from this point forward will cease to
be discussed. 1D nanostructures (here nanorods) have stimulated a
great deal of interest due to their importance in fundamental scientific

research and potential technological applications in nano-electronic,
nano-optoelectronic and nano-electro-mechanical systems. Rod-
shaped viruses, such as tobacco mosaic viruses and M13 bacterioph-
age, have been utilized as biological templates in the synthesis of semi-
conductor and metallic nanowires [6]. They were also proposed as
elements in the biologically inspired nanoelectronic circuits. Vibra-
tional and wave modes will affect the properties of the inorganic–
organic interface [6].

The length scales associated with nanostructures like carbon
nanotubes, nanofibers, nanowires, nanorods, graphene sheets are
such that to apply any classical continuum techniques, we need to
consider the small length scales such as lattice spacing between
individual atoms, surface properties, grain size. This makes a
physically consistent classical continuum model formulation very
challenging. The Eringen’s nonlocal elasticity theory [7–10] is a
useful tool in treating phenomena whose origins lie in the regimes
smaller than the classical continuum models. In this theory, the
internal size or scale could be represented in the constitutive
equations simply as material parameters. Such a nonlocal con-
tinuum mechanics has been widely accepted and has been applied
to many problems including wave propagation, dislocation, crack
problems, etc [10]. Recently, there has been great interest in the
application of nonlocal continuum mechanics for modeling and
analysis of nanostructures [11–25].
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The study of wave propagation in nanostructures has attracted
intensive attention in research because many crucial physical
properties such as electrical conductance, optical transition and
some dynamic behavior of carbon nanotubes (CNTs) are very
sensitive to the presence of wave [21]. Among the early studies,
the continuum shell model was developed by Natsuki [23] to
predict wave propagation in single-walled CNT embedded in an
elastic medium. Wang and Varadan [19] applied the elastic beam
theory to study the wave characteristics of single-walled and
double-walled CNTs base on both thin and thick beam models.
Another continuum model applicable to the analysis of CNTs is the
nonlocal elasticity stress field theory which was first proposed by
Eringen [7–10,26]. According to this theory, the stress at a point
within a continuous domain with nanoscale effects is dependent
not only on the strain at that point but also it is significantly
influenced by the stress of all points in the domain through a
nonlocal modulus in an integral sense. With such consideration, the
nonlocal forces at long-range between molecules and lattice lead to
the nonlocal stress–strain equation with higher-order strain gra-
dients. Because of its simplicity and superiority, the analysis of
wave propagation in CNTs and graphene sheets using the nonlocal
stress approach was recently reported [27–46]. In particular, Lu
et al. [30] derived the equation of motion for a nonlocal
Timoshenko beam to investigate the wave propagation character-
istics in single-walled and double-walled CNTs. Other nonlocal
shell models were also employed for further research in a number
of studies [35–39].

The present wave propagation studies using nonlocal continuum
model has shown that the wave behavior in a nanorod is drastically
different compared to the behavior of local or classical model. Hence,
the main objective of this paper is to bring out the main effects that the
nonlocal scale parameter to the wave propagation in nanorods.

In this paper, a nonlocal rod/bar model is developed for analyzing
the ultrasonic wave propagation in nanorods. The effect of nonlocal
scaling parameter (e0a) on the wave propagation in nanorods and also
the variation of the escape frequency with e0a is studied in detail. Here
e0a¼0.5 and 1.0 nm are used (detailed description on this value is
discussed in the next section), where a¼0.142 nm (C�C bond length).
The present paper is organized as follows. In Section 2, Eringen’s
nonlocal elasticity theory is explained and the governing partial
differential equation is derived for the nanorod. Wave propagation
analysis in nanorods is also carried out. The explicit expressions for
the wavenumbers as a function of wave frequency for the nanorod are
derived for various models and theories. Also the relation between the
escape frequency and nonlocal scaling parameter is derived. In
Section 3, some numerical results are presented on the wave
dispersion in nanorods. Finally, the paper ends with some important
observations and conclusions.

2. Mathematical formulation

2.1. Theory of nonlocal elasticity

This theory assumes that the stress state at a reference point x in
the body is regarded to be dependent not only on the strain state at
x but also on the strain states at all other points xu of the body. The
most general form of the constitutive relation in the nonlocal
elasticity type representation involves an integral over the entire
region of interest. The integral contains a nonlocal kernel function,
which describes the relative influences of the strains at various
locations on the stress at a given location. The constitutive
equations of linear, homogeneous, isotropic, nonlocal elastic solid
with zero body forces are given by [8,9]

sij,j ¼ 0 ð1Þ

sijðxÞ ¼

Z
V
aðjx�xuj,xÞCijkleklðxuÞ dVðxuÞ, 8xAV ð2Þ

eij ¼
1
2ðui,jþuj,iÞ ð3Þ

where Cijkl is the elastic modulus tensor of classical isotropic
elasticity, sij and eij are stress and strain tensors, respectively,
and ui is the displacement vector. a¼ aðjx�xuj,xÞ is the nonlocal
modulus or attenuation function incorporating the nonlocal effects
into the constitutive equations. This nonlocal modulus is found by
matching the curves of plane waves with those due to atomic lattice
dynamics. Various different forms of aðjx�xujÞ have been reported
in Ref. [10]. jx�xuj is the Euclidean distance, and x¼ e0a=‘ [11],
where a is an internal characteristic length, e.g., length of C–C bond
(0.142 nm) in CNT, granular distance etc., and ‘ is an external
characteristic length e.g., wavelength ðlÞ, crack length, size of the
sample etc. e0 is a nonlocal scaling parameter, which has been
assumed as a constant appropriate to each material in published
literature and V is the region occupied by the body. Choice of the
value of parameter e0a (in dimension of length) is crucial to ensure
the validity of nonlocal models. This parameter was determined by
matching the dispersion curves based on the atomic models [8]. For
a specific material, the corresponding nonlocal parameter can be
estimated by fitting the results of atomic lattice dynamics or
experiment.

Generally used kernel function aðjx�xuj,xÞ (in Eq. (2)) is given
as [7]

aðjxj,xÞ ¼ 1

2px2‘2
K0

ffiffiffiffiffiffiffiffiffi
x � x
p

x‘

� �
ð4Þ

where K0 is the modified Bessel function.
For two-dimensional nonlocal elasticity, there exists a differ-

ential form for the stress–strain relation (from Eq. (2)) [7–10]

ð1�x2‘2r
2
Þsij ¼ Cijklekl ð5Þ

where the operatorr2 is the Laplacian operator. Notice that in the
nonlocal elasticity, the effect of small-length scale is considered by
incorporating the internal parameter length into the constitutive
equation. One may also see that when the internal characteristic
length a is neglected, i.e., the particles of a medium are considered
to be continuously distributed, then x¼ 0, and Eq. (5) reduces to the
constitutive equation of classical elasticity. When the internal
characteristic length is negligible compared to external character-
istic length, x approaches to zero and hence nonlocal elasticity
theory reduces to classical elasticity theory. While the internal
characteristic length is reasonably close to external characteristic
length, x approaches to unity and thus the nonlocal elasticity
theory reduces to atomic lattice dynamics. For nanostructures, the
internal and external lengths are of the same order, and one has to
use the nonlocal theory for analysis.

2.1.1. Discussion on nonlocal small scale coefficient:

The identification of the small scaling parameter e0 in the
nonlocal theory has not been fully understood. Wang and Hu [27],
who adopted the second order strain gradient constitutive relation,
proposed e0¼0.288 for the flexural wave propagation study in a
single-walled carbon nanotube (SWCNT) through the use of
nonlocal Timoshenko beam model and molecular dynamic simula-
tions (MDSs). Eringen [8] himself proposed e0 as 0.39 based on the
matching of the dispersion curves via nonlocal theory for plane
wave and Born� K �arm �an model of lattice dynamics at the end of
the Brillouin zone, k� a¼ p, where a is the distance between atoms
and k is the wave number in the phonon analysis. On the other
hand, Eringen [9] proposed e0¼0.31 in his study on the comparison
of the Rayleigh surface wave via nonlocal continuum mechanics
and lattice dynamics. Zhang et al. [14] estimated e0¼0.82 from the
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