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a b s t r a c t

We propose a mechanism to control the Rashba-induced subband splitting by a magnetic field using a

symmetric double quantum well (QW) system, where the lowest two subbands are coupled by a

position-dependent Rashba parameter aðzÞ. In such a system, all subbands are spin degenerate due to

the time reversal symmetry and the spatial inversion symmetry at zero magnetic field, despite the

presence of the Rashba spin–orbit interaction. Applying an external magnetic field parallel to the QW

plane (BJŷ) lifts this spin degeneracy breaking the time reversal symmetry, where the spin splitting

energies are controllable in the range between zero and 2.9 meV, the latter being on the same order of

magnitude as a typical Rashba splitting in a narrow asymmetric QW. We find that the first and second

subband energy levels for a selected spin state with kJ ¼ ðkF,0,0Þ anticross each other, and that the

energy of the subband splitting D0, equivalent to the Rashba splitting for the case of single QWs, can be

determined from the value of the anticrossing magnetic field Bac. These results suggest that the

investigation in the symmetric double QWs would provide useful approaches for quantitative

understanding of the Rashba spin–orbit interaction.

& 2010 Elsevier B.V. All rights reserved.

There have been much interest in spin–orbit interactions in
narrow gap semiconductors for manipulating quantum spin
rotation without magnetic fields and for application to semi-
conductor-based spintronics devices [1]. Spin–orbit interactions
in semiconductors are classified into two types: the Rashba effect,
due to the structural inversion asymmetry [2,3] and the
Dresselhaus effect, due to the bulk inversion asymmetry [4]. The
Rashba effect has been expected to provide a useful way of
controlling spins by an electric field [5–7]. The Dresselhaus effect,
which is not explicitly controllable by gate, is also present in
narrow gap semiconductors. Precise values of these spin–orbit
coupling constants are important for understanding physics of
spin–orbit interaction and to implement spintronics devices. The
spin–orbit coupling constants have been investigated by various
methods including observation of beating in Shubnikov-de Haas
(SdH) oscillations [8–11], weak antilocalization [12], spin inter-
ference in mesoscopic loop arrays [13,14], and spin Galvanic effect
[15]. However, as the origin of the beating in SdH oscillations is
still under the debates [16,17], no single measurement has
provided reliable values for the spin–orbit coupling constants
yet. We also point out that most investigations on the Rashba
spin–orbit effect, thus far, utilized asymmetric quantum well
(QW) potentials, i.e., the systems without structural inversion
symmetry, since a net electric field within the QWs is considered

to be essential for the Rashba splitting. Recently, however, it has
been shown that the Rashba spin–orbit interaction has some roles
even in symmetric QWs because of its position-dependence in aðzÞ
[see Fig. 1(b)] reflecting the position-dependence of the local
electric field [18,19].

In this paper, we propose to use symmetric double QWs to
clarify the Rashba effect quantitatively. This approach has
two advantages: (1) we can prepare systems that have a
known electric field within the QW and (2) we can utilize an
external magnetic field to further control the spin splitting
energies, which would provide quantitative insight into the
Rashba spin–orbit interaction. We employ the effective mass
approximation to calculate spin-resolved subband energy split-
tings in the conduction band of symmetric AlSb/InAs/AlSb QWs
(well-thickness dQW¼30–60 nm) with a fixed electron density
Ns ¼ 3:0� 1016 m�2. We will show that the lowest two subbands
of a selected spin state exhibit a level-anticrossing at a small
magnetic field Bac. We will then discuss that the determination of
Bac has a direct relevance to the quantitative determination of a
value for a given QW with a known electric field.

The Hamiltonian for an electron in the QW is given by H ¼ H0

+ HR. Here, H0 is the spin-independent unperturbed Hamiltonian,

H0 ¼
‘2

2m�J
fðkxþeBz=‘Þ2þk2

yg�
d

dz

‘2

2m�z ðzÞ

d

dz
þVðzÞ, ð1Þ

where the in-plane and out-of-plane effective masses within the
InAs layer are chosen to be m�J ¼ 0:03m0 and m*

z ¼ 0.026m0,
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respectively. m*
z value used for the AlSb barrier layer is 0.14m0.

We also consider a kinematic shift in the momentum operator
p-pþeA in Eq. (1), assuming the presence of an in-plane
magnetic field (BJŷÞ using a vector potential A ¼ (Bz, 0, 0). The
confinement potential V(z), which has been bent by the Hartree
potential due to the electrons within the QW, forms a symmetric
double QW for the conduction electrons, as shown in Fig. 1(a).
To calculate the Hartree potential, we assumed a homogeneous
charge distribution rðzÞ ¼ �eNs=dQW for simplicity. While this
assumption tends to overestimate the values of internal electric
field for large dQW’s ð\60 nmÞ, the calculated potential profiles
well-approximated those that the more accurate self-consistent
Poisson–Schrödinger solutions would predict for dQWt60 nm.

The Rashba Hamiltonian HR, including the kinematic shift of p
as described above, is given by

HR ¼ aðzÞfkysx�ðkxþeBz=‘Þsyg, ð2Þ

where sx and sy are Pauli’s spin matrices. We note that the
Rashba parameter a retains z-dependence through the k � p
formalism [6,10],

aðzÞ ¼ ‘2EP

6m0

d

dz

1

EF�EG7
ðzÞ
�

1

EF�EG8
ðzÞ

� �
, ð3Þ

where EF is the Fermi energy, and we use EP ¼ 21.5 eV for the k � p
interaction parameter [10,20]. Similarly with V(z), the spin split-
off band energy EG7

ðzÞ and the valence band edge energy EG8
ðzÞ are

even functions of z [21]. As the derivative of these energies, aðzÞ is
an odd function of z [see Fig. 1(b)]. From the Schrödinger equation
with the full Hamiltonian H ¼ H0 + HR in the absence of B, we
obtain the electron eigenenergies En,sðkJÞ, and the eigenstates
(basis) jCn,kJ ,sS¼Cn,kJ ,sðzÞe

ikJ�rJ jsS, where n¼ 1,2,3, . . . is the
subband index due to the quantization by V(z) and s¼m( up) or
k( down) is the index for spin eigenstate (basis) whose spin axis
depends on kJ. We ignore the Zeeman effect, since the Zeeman
splitting energies are much smaller than the subband and/or

Rashba splitting energies for Bo100 mT, where we can expect the
most interesting phenomena in the current investigation. The
effect of Dresselhaus term was not included for simplicity, but
will be considered in the future works.

The results of the calculation for the lowest four subband
energies, E1,s, E2,s, E3,s, and E4,s, for kJ ¼ 0 and B ¼ 0 as a function
of the well-thickness dQW are shown in Fig. 2(a). All subbands are
spin degenerate since both the Rashba effect and the orbital

Zeeman effect, which is associated with the kinematic shift of p,
are absent because kJ ¼ 0 and B ¼ 0 are assumed. Note that the
kink (in the energies E1,s and E2,s) at dQW ¼ 43 nm is due to the
electron occupation of the fourth subband. Fig. 2(b) shows the
dispersion relations of the electrons for the symmetric QW with
dQW ¼ 45 nm along the kx direction at B ¼ 80 mT. Since the in-
plane B breaks the time reversal symmetry, the Kramers
degeneracy [En,mðkJÞ ¼ En,kð�kJÞ] is lifted, while the relation
En,sðkJÞ ¼ En,sð�kJÞ remains to hold due to the spatial inversion
symmetry. This spin splitting contrasts with the zero-field Rashba
splitting in a single asymmetric QW, where the Kramers
degeneracy is kept hold but the latter relation [En,sðkJÞ ¼

En,sð�kJÞ] does not hold. We will not discuss the spin splitting
energies for subbands with nZ3 here because they are very small
relative to those for nr2.

Fig. 3 illustrates how the relative subband energies, E1,s and
E2,s for jkJj ¼ kF, where kF is the Fermi wave number [see the inset
of Fig. 2(b)], evolve with (a) well-thickness, (b) magnetic field, and
(c) azimuthal angle yk [kJ ¼ ðkF cosyk,kF sinykÞ as shown in the
inset of Fig. 3(c)]. In each graph, the gray broken curves represent
the results without the Rashba term HR (only with H0) for
comparison. We find, in Fig. 3(a), that the subband splitting
D0 � E2,s�E1,s at B ¼ 0 decreases with increasing dQW for
dQWt42 nm, due to the decrease of the quantum confinement
effect. The deviation of the black (E1,m=k) and the blue (E2,m=k)
curves from the gray broken curves (results without HR) is the
effect of HR. We also find that, for dQW\50 nm, the energy
splitting stays almost constant (D0 � 2:9 meV) when the effect of
HR is taken into account, while it decays to negligibly small values
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Fig. 1. (a) Schematic diagram of a symmetric double well potential of a AlSb/InAs/

AlSb heterostructure. The red arrows indicate directions of the internal electric

fields [EðzÞ ¼ ð1=eÞdVðzÞ=dz] at up (z40) and down (zo0) sides of the well.

(b) Position-dependent Rashba parameter aðzÞ calculated from a potential profile

in (a) using Eq. (3). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 2. (a) Spin degenerate subband energies at B¼0 as a function of the well-

thickness dQW for kJ ¼ 0. (b) Dispersion relation along kJ ¼ ðkx ,0,0Þ for dQW ¼

45 nm at B ¼ 80 mT [B ¼ (0,B,0)]. Inset: a magnification of the lowest four spin-

subbands around the Fermi energy. Dotted lines represent the first and second

subband energies at B ¼ 0. The Fermi wave number kF for the fixed electron

density Ns ¼ 3:0� 1016 m�2 is 2.86�108 m�1 for dQW ¼45 nm.
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