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Abstract

In the present work, the effect of a central electrical impurity (dipole) on quantum conductance in simple cubic nano-wires (SCNW)

has been investigated in the tight-binding (TB) approach and assuming nearest-neighbor interaction by Green’s function (GF) method.

We illustrate that in the presence of electrical impurity (external potential), the number of channels and energy band of nano-wire

decrease. The variation of the energy band and the number of channels depend on the position and amount of the electrical charge

(dipole moment) in the SCNW.
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1. Introduction

The study of electrical conductance in mesoscopic
systems is one of the most fundamental problems in
nanostructure physics. In recent years, there has been a
growing interest in electrical transport in quantum dots
(QDs), quantum wires, and molecular wires [1–5]. Several
different methods have been developed for the study of
electron-impurity potential scattering that have a common
basis in the Landauer [6–9] approach. In this approach, in
the linear response regime, the conductance is obtained as a
quantum mechanical problem and can be related to the
total transmission at the Fermi energy, on the other hand,
G ¼ ð2e2=hÞTðeFÞ. We rely on this theory as the basis for
studying the conductance properties of nano-wire systems
in the presence of an electrical impurity.

In our previous works, we have calculated theoretically the
coherent conductance, resonant and bound state energies in
the TB approach and assuming nearest-neighbor interaction
for uniform nano-crystal [10], periodic QD [11], molecular
wire [12], and general periodic nanostructure [12] systems by
Green’s function (GF) and transfer matrix methods.
In the present paper, we study the quantum transport in a

simple cubic QD (SCQD) attached to the metallic nano leads
in the ballistic regime. In Section 2, we investigate the relation
between GF and the electrical conductance for a general
nanostructure system. In Section 3, we study the effect of a
central electrical impurity and an electrical dipole on coherent
conductance. Finally, the paper is ended with a conclusion.

2. Theoretical model

We assume the isolated system A has been introduced
with HA Hamiltonian in tight-binding (TB) approach. For
this system the GF is defined as follows:

ðeI �HAÞGA ¼ I , (1)

ARTICLE IN PRESS

www.elsevier.com/locate/physe

1386-9477/$ - see front matter r 2006 Published by Elsevier B.V.

doi:10.1016/j.physe.2006.01.002

�Corresponding author. Computational Physical Science Research

Laboratory, Department of Nano-Science, Institute for Studies in

Theoretical Physics and Mathematics (IPM), Tehran, Iran.

E-mail addresses: moh_mardani@yahoo.com,

mardaani@nano.ipm.ac.ir (M. Mardaani).

www.elsevier.com/locate/physe


where e, I and, G stand for energy, unit operator and the
GF operator for isolated system A, respectively. Now, we
assume a system divided into two subsystems A and B,
the Hamiltonian for the whole system is considered as
follows:

H ¼ HA þHB þH int, (2)

in which Hint refers to the Hamiltonian of the interaction
between two subsystems A (such as QD) and B (such as left
or right lead), with regard to GF definition, the GF inverse
of system A in the presence of system B and vice versa are
as [3,10]

G�1A ðeÞ ¼ G�1A;0ðeÞ �H intGBðeÞH int;

G�1B ðeÞ ¼ G�1B;0ðeÞ �H intGAðeÞH int;
(3)

where G�1AðBÞðeÞ and G�1AðBÞ;0ðeÞ are the GF inverse of
subsystem A (B) in the presence of subsystem B (A), the
GF of isolated system A (B) and interaction Hamiltonian
between two systems A and B, respectively. It can be seen
from Eq. (3), the two mentioned GFs are related to each
other. Thus, for calculating GF of system A, we need to
calculate the GF of system B and vice versa. Now, we
assume that the comprising cells/particles of system B are
much more numerous than system A, in this case,
subsystem A, will not cause a considerable change in the
energy band of system B, but, the energy spectrum of
subsystem A changes in the presence of system B, which
this changes are depended on Hint term. Therefore, with
respect to the above reasoning the GF of subsystem B is
independent of presence or absence of subsystem A, then,
the GF of system A in the presence of system B becomes

G�1A ðeÞ ¼ G�1A;0ðeÞ �H intGB;0ðeÞH int, (4)

in which the second term in Eq. (4) is called the system A
self-energy in the presence of subsystem B. On the other
hand, in general form, the self-energy operator is intro-
duced as follows:

SAðeÞ ¼ H intGB;0ðeÞH int. (5)

In the meanwhile, the system A could physically be an
atom, molecule, polymer, atomic cluster or even a super-
lattice with nanometer dimensions, and in the case of
system B it can be a nano-electrode, nano-tube or sort of a
long length carbon chain (molecule wire).

3. Conductance of a simple cubic nano-wire: GF approach

Now, we consider a nano-wire composed of a SCQD
attached to two uniform simple cubic nano-leads. For
simplicity, two metallic leads are assumed ideal.

Also we calculate the electrical conductance in the
coherent mechanism. It means that the dot length is
smaller than the phase coherence length. The whole system
Hamiltonian including the QD, contacts and leads
Hamiltonians are introduced as

H ¼ HL þHDL þHD þHDR þHR, (6)

where HL,D,R describes the Hamiltonian of the left-lead,
the dot, and the right-lead, and also, HDL(R) refers to the
interaction Hamiltonian between the QD and the left
(right) lead. In the other words, the terms HD, HL(R) and
HDL(R) in Eq. (6) are replaced with HA, HB and Hint,
respectively, in Eq. (2).
Here for simplicity, we assume that the geometry of the

quasi-one-dimensional system is simple cubic, assuming a
simple cubic QD with Nx�Ny�NZ atoms which is
coupled to the simple cubic nano-wire with Nx�Ny atoms
in cross-section, also, both the dot and leads are assumed
to have the same geometry. Fig. 1 shows a schematic of
typical simple cubic dot (SC-DOT) where is attached to the
simple cubic leads.
We further assume that all the hopping integrals, from

one unit cell to the next, are the same regardless of atom
positions within the unit cell, but the onsite energies need
not to be the same within a cell, or from one unit cell to the
next in the dot region.
We have obtained a unitary transformation which

separates different modes of this system in Ref. [10]. In
this reference we have showed the quasi-one-dimensional
(simple cubic nano-wire (SCNW)) problem with Nx�Ny

atoms in xy arrangement (cross-section of the SCNW),
converts to the Nx�Ny number of one-dimensional chains
problem without interaction, but, with different on-site
energies depended on mode numbers. Following the
mentioned unitary transformation, the SCNW Hamilto-
nian can be written as

Ha ¼
X
m;n;j

ea;mncþmn;j þ
X
mn;j

tDðRÞ cþmn;jcmn;jþ1 þ h:c:
� �

, (7)

where a refers to the L (left-lead) or R (right-lead) or D
(dot), j refers to the site index (cell number) in the z-axis
direction. Also the mode number m (n) refers to quantum
number in xy cross-section after diagonalization, and tD(R)

refers to the hopping term in z-axis direction. In Eq. (7) the
on-site energies for the left and right leads are derived as

eLðRÞ;mn ¼ 2tLðRÞxcos
mp

Nx þ 1

� �
þ 2tLðRÞycos

np
Ny þ 1

� �
, (8)

where tL(R)x and tL(R)y refer to the hopping term in the
cross-section of the leads in the x and y direction,
respectively.
The interaction Hamiltonian between the QD and the left

and right leads in the TB approach and nearest-neighbor
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Fig. 1. Schematic of a typical SCNW (simple cubic dot attached to the

simple cubic leads).
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