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Abstract

The surface elasticity and non-local elasticity effects on the elastic behavior of statically bent nanowires are investigated in the present
investigation. Explicit solutions are presented to evaluate the surface stress and non-local elasticity effects with various boundary conditions.
Compared with the classical Euler beam, a nanowire with surface stress and/or non-local elasticity can be either stiffer or less stiff, depending on
the boundary conditions. The concept of surface non-local elasticity was proposed and its physical interpretation discussed to explain the
combined effect of surface elasticity and non-local elasticity. The effect of the nanowire size on its elastic bending behavior was investigated. The
results obtained herein are helpful to characterize mechanical properties of nanowires and aid nanowire-based devices design.
& 2015 Chinese Materials Research Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Outstanding mechanical properties of nanowires have been
of considerable interest to researchers. For example, Wu et al.
[1] measured the yield strength of Au nanowires by three-point
bending using atomic force microscopy (AFM), and it's
average values are 5.671.4 GPa, which is more than 25
times higher than the bulk Au values. Treacy et al. [2] found
that the Young's modulus of carbon nanotubes was in the Tera-
Pascal (TPa) range. Cuenot et al. [3] reported the diameter-
dependent elastic modulus effects in Ag and Pb nanowires.
Meanwhile, the classical beam theory has been unsuccessful to
theoretically analyze the mechanical properties of one-
dimensional nano-materials. Hence, accurate description of
nanowires' mechanical behavior is essential.

Surface effects have been recognized as significant factors
during the deformation process of nanobeams. Chen et al. [4]
proposed a core–shell composite nanowires model to explain

the surface effects on the mechanical behavior of nanowires.
He et al. [5] investigated surface stress and surface elasticity
effects on the elastic behavior of statically bent nanowires.
Jiang et al. [6] addressed combined surface and shear
deformation effects based on the Timoshenko beam theory
and the Young–Laplace equation. Wang and Feng [7] studied
surface effects on buckling and vibration behavior of nano-
wires. All these research reports show that the surface effects
play a significant role in the deformation behavior of one-
dimensional nano-materials.
Based on the lattice dynamics theory and experimental

observations on phonon dispersion, Eringen [8,9] proposed the
non-local elasticity theory in 1972. According to this theory, it is
assumed that the stress at a given reference point depends not
only on the strain at this point, but also on the strain at other
points in the body. This way, the influence of the long range
forces between the atoms is taken into consideration, and thus the
internal size scale can be introduced in the constitutive equations.
In recent years, many researchers have successfully applied the
non-local elasticity theory for explaining the deformation beha-
vior of micro- and nanobeams [10–13].
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In this letter, the non-local elasticity theory is implemented
to analyze the bending behavior of centrally loaded nanowires
with consideration of surface elasticity and surface stress.

2. Non-local elasticity and surface effects

Under certain conditions, based on the non-local elasticity
theory, the non-local stress tensor, sxy, within a two-dimensional
region, using the Green's functions, is expressed as [8]:

s
0
xy ¼ 1� e0lð Þ2∇2

� �
sxy; ð1Þ

where s
0
xy is the (classical) stress tensor, l represents internal

characteristic length (e.g., the lattice parameter, grain size, C–C
bond length, etc.). The Laplace operator ∇2 equals ∂2/∂x2þ∂2/∂y2

in Cartesian coordinates, and e0 is a constant appropriate to each
material. Eringen [8] obtained the magnitude of e0¼0.39 by
matching the dispersion curves of the plane waves with those of
atomic lattice. Hence, the Hooke's law for uniaxial stress state can
be expressed as:

s xð Þ� e0lð Þ2 ∂
2s xð Þ
∂x2

¼ Eϵ xð Þ ð2Þ

Since the surface-to-volume ratio is large in nano-materials,
nanowires were treated as a superposition of the surface layers
and the bulk volume. The thickness of the beam is much larger
than the thickness of the surface layer t0. This way, the
traditional flexural rigidity D for the bulk material is replaced
by the effective flexural rigidity D* for the composite beam.
The effective flexural rigidity D* for either rectangular or
circular cross-section is:

D � ¼
Eab3

12 þ Esab
2

2 þ Esb
3

6 rectangleð Þ
πEd4

64 þ πEsd
3

8 circularð Þ
;

8<
: ð3Þ

where a is the length of rectangle, b represents the width of
rectangle, d is the diameter of circular, E and Es represent the
Young's modulus of the bulk and the surface, respectively.

The existing constant residual surface tension on the
surfaces above and below the bulk material causes a nanobeam
to curve. The mathematic relation between the curvature tensor
κ and the stress jump τþij �τ�ij

D E
across a surface is based on

the generalized Laplace–Young equation [5,6,14]:

τþij �τ�ij
D E

ninj ¼ τsκ; ð4Þ

where τþij and τ�ij denote the upper and the lower surface
stresses, respectively, ni is the unit normal vector to the
surface, κ is the curvature tensor of the nanowire and τs is
the surface stress tensor given by [5,6,15]:

τs ¼ τ0þEsεx; ð5Þ
where τ0 is the residual surface stress along the longitudinal
direction of the nanobeam and εx is the strain along the
nanowire longitudinal direction.

According to Eq. (4), the stress jump leads to a distributed
transverse force q(x) along the nanowire longitudinal direction
[14]. For a deformed nanowire, the distributed force is given

by [5,6]:

q xð Þ ¼Hw″ xð Þ; ð6Þ
where w(x) denotes the nanobeam transverse displacement, and
H is a constant parameter given by [5,6]:

H ¼
2τsa rectangleð Þ
2τsd circularð Þ

(
ð7Þ

3. Non-local elasticity and surface stress coupling effects on
the Euler–Bernoulli beam

Considering the Euler–Bernoulli beam model, the equili-
brium equations for the shear force, T, the bending moment,
M, and the transverse distributed load, q(x), are:

∂T
∂x

þq xð Þ ¼ 0 ð8Þ

T� ∂M
∂x

¼ 0 ð9Þ

The bending moment constitutive relation accounting for the
non-local elasticity and surface stress effects is written as:

M� e0lð Þ2 ∂
2M

∂x2
¼ �D� ∂

2w

∂x2
ð10Þ

In view of Eqs. (8)–(10), the governing equation for the
bending of non-local Euler–Bernoulli beam with the surface
effects is given by

D� ∂
4w

∂x4
þ e0lð Þ2 ∂

2q xð Þ
∂x2

�q xð Þ ¼ 0 ð11Þ

By substituting Eq. (6) into Eq. (11), one obtains

D�þH e0lð Þ2� � ∂4w
∂x4

¼H
∂2w
∂x2

ð12Þ

Letting

ηEns ¼
HL2

D�þH e0lð Þ2 ð13Þ

The boundary conditions for the two kinds of the end are:

Clamped end : w 0ð Þ ¼ 0;w0 0ð Þ ¼ 0 ð14Þ
Simply supported end : w 0ð Þ ¼ 0;w″ 0ð Þ ¼ 0 ð15Þ
Fig. 1 shows the deformation of a nanobeam with surface stress

in different boundary conditions. As a constant concentrated force
P is loading the free end at x¼L, the moment and the force
equilibrium conditions of the clamped-free beam (C-F) are:

�M 0ð Þ ¼ PLþ
Z L

0
Hw″ xð Þxdx¼ PLþHLw0 Lð Þ�Hw Lð Þ

ð16Þ
and

T 0ð Þ ¼ Pþ
Z L

0
Hw″ xð Þdx¼ PþHw0 Lð Þ�Hw0 0ð Þ; ð17Þ

respectively. When the simply supported beam (S-S) subjected to
a concentrated force P at the midpoint x¼L/2, the slope at x¼L/2
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