
Nucleation and crystal growth kinetics during solidification: The role
of crystallite withdrawal rate and external heat and mass sources

D.V. Alexandrov n

Department of Mathematical Physics, Ural Federal University, Lenin Avenue, 51, Ekaterinburg 620000, Russian Federation

H I G H L I G H T S

� The article deals with a problem of transient nucleation at the intermediate stage of phase transitions in crystallizers.
� A new analytical method based on the saddle-point technique is developed.
� The Fokker–Planck and balance equations are solved in the presence of crystallite withdrawal rate and external sources.
� An exact analytical solution is constructed for arbitrary nucleation mechanisms and growth kinetics.
� The Weber–Volmer–Frenkel–Zel’dovich and Meirs kinetics are considered in some detail.
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a b s t r a c t

A complete analytical solution of the integro-differential model describing the transient nucleation and
growth of the crystals at the intermediate stage of phase transitions is constructed. The roles of external
heat/mass sources appearing in the balance equations and the crystallite withdrawal rate entering in the
Fokker–Planck equation are detailed. An exact analytical solution of the Fokker–Planck equation is found
for arbitrary nucleation mechanisms and growth kinetics. Two important cases of the Weber–Volmer–
Frenkel–Zel'dovich and Meirs kinetics are considered in some detail. A non-linear time-dependent
integral equation with memory kernel for the metastability level is analytically solved on the basis of the
saddle-point method for the Laplace integral in the case of mixed kinetic-diffusion regime of crystal
growth, which is of frequent occurrence. It is shown that the desupercooling/desupersaturation rate
decreases with increasing the crystal withdrawal rate and intensities of external sources. The density
distribution function becomes more and more broad with time. In addition, this function increases with
decreasing the crystallite withdrawal rate and with increasing intensities of external sources.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Industrial production of many kinds of materials from super-
cooled melts and supersaturated solutions is very important
for many metallurgical, chemical and pharmaceutical products
(Mullin, 1972; Barrett et al., 2005; Larsen et al., 2006; Abu Bakar
et al., 2009; Kelton and Greer, 2010). The final goal of every
industrial crystallization process is to obtain crystals of a given size,
shape, composition, and internal structure. This goal is achieved
using a variety of methods based on the main mechanisms:
nucleation of crystals and their subsequent growth. The formation
and evolution of nuclei in batch crystallizers is essentially a dynamic
process controlled by the competition among the crystal with-
drawal rate, the intensity of external heat (mass) sources and the

rate of metastability reduction, which is dependent on both the
nucleation frequency and growth rate of crystals. A deeper under-
standing of these processes is of great importance in relation to the
nucleation and crystal growth phenomena as well as to the design,
operation and control of industrial crystallizers. The governing
equations of this process represent highly nonlinear system of
integro-differential equations. This explains why mathematical
methods to study the dynamic behavior of such complicated
systems are poorly elaborated.

From the theoretical point of view it is convenient to distin-
guish four main process stages (Buyevich and Ivanov, 1993; Barlow
et al., 2004; Shneidman, 2011). First, there is the preliminary stage,
during which a supercooled/supersaturated state develops. In the
second stage, critical nuclei of the new phase appear and evolve
under the constant metastability (supercooling/supersaturation).
These nuclei can be formed heterogeneously around ions or dust
particles or homogeneously in the interior of a metastable system.
In the third intermediate stage, nucleation of crystals, their growth
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and metastability reduction (desupercooling/desupersaturation)
occur. The fourth relaxation stage describes the Ostwald ripening
and agglomeration processes. An important distinguishing feature
of the phase transition process in a crystallizer is the dependence
of the mass (heat) balance equation on intensity of external mass
source (heat sink) as well as the dependence of the Fokker–Planck
kinetic equation on the crystal withdrawal rate. An attempt of
allowing simultaneously for the aforementioned mechanisms in
batch crystallizers has been made previously by Buyevich et al.
(1991) (see also the similar theory developed by Buyevich and
Natalukha (1994) for the combined polymerization and crystal-
lization in continuous apparatuses). However, the governing
integro-differential equations describing the nucleation and
growth processes in a batch crystallizer have been integrated only
for the asymptotic regime of large crystallization time τ. In
addition, the final analytical solution has been presented as a
non-linear functional integro-differential equation for the relative
supercooling/supersaturation even in the limiting case τ-1
analyzed by Buyevich et al. (1991).

The main task of the present study is to develop a new
theoretical approach for the construction of analytical solutions
of the integro-differential model, describing the nucleation of
crystals and their subsequent growth at the intermediate stage
of phase transitions complicated by the crystal withdrawal rate
and external mass/heat sources/sinks in a crystallizer.

2. Nucleation and crystal growth

In this paper, the previously developed model (Alexandrov and
Malygin, 2013, 2014; Alexandrov and Nizovtseva, 2014) of bulk
crystallization from a supercooled melt or supersaturated solution
is extended to processes which, in addition to nucleation and
growth of crystals of the new phase, include the mass (heat)
exchange with the surroundings and removal of the crystallites
from the mother metastable medium. The supercooling/super-
saturation in the system is regarded as macroscopically homo-
geneous throughout the tank volume considered (homogeneity is
achieved in practice by intensive mixing of the system). Physical
properties of both the melt/solution and the solid phase are
assumed to be constant and independent of supercooling/super-
saturation, time and spatial coordinates. The resulting crystals are
removed from the system and the total volume of the new phase
nuclei is much smaller than the volume of the liquid phase. Under
these conditions the evolution of each crystal is independent of
the behavior of the remaining solid phase nuclei. It is also assumed
that the system supercooling/supersaturation is such to prevent
any noticeable agglomeration or breaking of solid crystals. An
important point is that variations of crystal habit are negligible,
and therefore we define the nucleus size with the help of a single
parameter – the radius of a spherical crystallite.

Crystallization from a supercooled melt is described by the heat
balance equation written for the system temperature θ

ρmCm
dθ
dτ

¼ Q1þ4πρsL
Z 1

rn
f ðτ; rÞr2dr

dτ
dr; τ40; r4rn; ð1Þ

where ρm and Cm are the density and specific heat of the mixture,
τ is the crystallization time, Q1o0 is the temperature (super-
cooling) dependent heat flux to the surroundings, ρs is the density
of the solid phase, L is the latent heat of phase transition, f is the
density of crystal radius distribution function, dr=dτ is the rate of
crystal growth, and rn is the minimum size of the crystals (radius
of critical nuclei).

If crystallization occurs from a supersaturated solution the
mass balance equation takes the form of

dC
dτ

¼ Q2�4πCp

Z 1

rn
f ðτ; rÞr2dr

dτ
dr; τ40; r4rn: ð2Þ

Here C is the system concentration, Cp is the concentration at
saturation, and Q2 is the concentration (supersaturation) depen-
dent mass flux of the crystallizing substance to the system per unit
volume, entering the crystallizer.

The kinetic equation, which has the meaning of the continuity
equation in the space of radii and its boundary condition can be
written as (Buyevich et al., 1991)

∂f
∂τ

þ ∂
∂r

dr
dτ

f
� �

þgðrÞf ¼ 0; τ40; r4rn; ð3Þ

dr
dτ

f ¼ I; r¼ rn; τ40; ð4Þ

where I is the nucleation frequency dependent on the system
supercooling/supersaturation. Eq. (3) virtually represents the
Fokker–Planck equation for the evolution of the crystal size
density distribution function in a crystallizer. The function g(r)
expresses the crystal withdrawal rate. This function is inversely
proportional to the mean residence time of crystals of size r. The
boundary condition (4) determines the flux of nuclei that have
overcome the critical barrier.

The growth rate of crystals in supercooled melts and super-
saturated solutions has been analytically found and discussed by
Alexandrov and Malygin (2013). Let us represent the final result as

dr
dτ

¼ βnΔθ
1þβnqr

; Δθ¼ θp�θ; q¼ ρsL
λl

ð5Þ

in the case of supercooled melts and

dr
dτ

¼ β
n
ΔC

1þβnqr
; ΔC ¼ C�Cp; q¼ Cp

D
ð6Þ

in the case of supersaturated solutions. Here βn is the kinetic
parameter, θp is the phase transition temperature, λl is the
temperature conductivity coefficient, and D is the diffusion coeffi-
cient. Expressions (5) and (6) include two limiting regimes of
crystal growth: the kinetic regime for small crystallites, βnqr{1,
and the diffusion regime for large crystallites, β

n
qrc1, (Buyevich

and Mansurov, 1990).
The nucleation frequency I can be expressed as an exponential

function of the energy barrier height (Alexandrov and Malygin,
2013; Buyevich and Mansurov, 1990; Zettlemoyer, 1969; Lifshitz
and Pitaevskii, 1981)

IðΔθÞ ¼ In exp �pΔθ2
0

Δθ2

 !
; p¼ 16πγ3i θp

3ρ2
s L

2Δθ2
0kB

ð7Þ

if the system is a supercooled melt and

IðΔCÞ ¼ In exp � p

ln2ðC=CpÞ

 !
; p¼ 16πγ3i M

2
s

3ρ2
s R

2
gθ

3
s kB

ð8Þ

if the system is a supersaturated solution. Here γi is the surface
tension, Δθ0 is the initial supercooling, kB is the Boltzmann
constant, Ms is the molecular weight, Rg is the universal gas
constant, θs is the temperature of solution, and p has the meaning
of the dimensionless Gibbs number. Expressions (7) and (8) are
called the Weber–Volmer–Frenkel–Zel'dovich nucleation kinetics.

Let us also write down some empirical formulas for I which are
frequently used in analyzing many industrial processes for super-
cooled melts

IðΔθÞ ¼ InðΔθÞp ð9Þ
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