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H I G H L I G H T S

� The dynamics of reactive systems with atypical behavior are represented by FDE.
� Different fermentation processes were represented by the same fractional model.
� A formal fractionalization approach was used to obtain the model of hydrolysis.
� Results show the capabilities of fractional calculus for modeling dynamic systems.
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a b s t r a c t

This series of two papers is concerned with both the modeling and the optimization of systems whose
governing equations contain fractional derivative operators. In this first work, we show that the
dynamics of some reactive systems displaying atypical behavior can be represented by fractional order
differential equations. We consider three different instances of fermentation processes and one case of a
thermal hydrolysis process. We propose a fractional fermentation model and, based on experimental
data, a non-linear fitting approach that includes fractional integration is used to obtain the fractional
orders and kinetics parameters. On the other hand, since the ordinary thermal hydrolysis model used as
a reference was derived from fundamental principles, a formal fractionalization approach was used in
this work to obtain the corresponding fractional model. Results show the feasibility and capabilities of
fractional calculus as a tool for modeling dynamic systems in the area of process systems engineering.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction: fractional calculus and its modeling
capabilities

Fractional calculus is a generalization of ordinary calculus
which introduces derivatives and integrals of fractional order.
Major reviews on the concepts and history of fractional calculus
can be found in the books of Samko et al. (1993), Oldham and
Spanier (1974), Miller and Ross (1993) and Podlubny (1999).
Reports of successful modeling applications of fractional calculus
are as old as the works developed by Caputo (1967) and Caputo
and Mainardi (1971), related to the modeling of viscoelastic fluids;
however, it has not been until the last two decades when the use

of fractional order operators and operations has become more
popular among many research areas.

Several authors have recently shown that fractional calculus is a
powerful modeling tool to represent the behavior of a number of
mechanical and electrical dynamic systems (Magin, 2006; Sabatier et
al., 2007). In addition, many works describe and/or study the non-
locality property and the memory effect of fractional calculus opera-
tors (Magin, 2006; Herrmann, 2011; Sun et al., 2011; Constantinescu
and Stoicescu, 2011; Du et al., 2013). In particular, Magin (2006)
provides a simple but illustrative example of the memory effect of a
fractional derivative. It is therefore generally accepted that physical
considerations, such as memory and hereditary effects, favor the use of
fractional derivative-based models. Theoretical developments are also
in progress (Diethelm, 2010; Ortigueira, 2011) in order to consolidate
the fundamentals and provide the basis for a more extensive use of
this tool in science and engineering.
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Of particular interest in this work are the applications of fractional
calculus to diffusion and anomalous kinetics. Literature suggests that
diffusion processes are accurately represented by fractional differential
equations (FDE) (Sokolov et al., 2002; San Jose Martinez et al., 2007).
Further, diffusion is one of the main mechanisms of various processes
in living organisms and gives rise to kinetics that are referred to as
anomalous, to indicate the fact that deviate from the classic descrip-
tion. Anomalous kinetics can also result from reaction-limited pro-
cesses and long-time trapping. It is thought that anomalous kinetics
introduces memory effects in the process that need to be accounted
for to correctly describe it (Dokoumetzidis and Macheras, 2009).
Literature reports several approaches to describe anomalous kinetics
including empirical power-laws, gamma functions or fractal kinetics.
Nevertheless, anomalous kinetics have recently been modeled by
using fractional calculus (Dokoumetzidis and Macheras, 2009;
Dokoumetzidis et al., 2010a, 2010b). Dokoumetzidis and Macheras
(2009) study the drug release/dissolution processes (pharmacoki-
netics) as a fractional model. Due to the heterogeneous structure
and function of the GI tract, the dissolution or release of drug takes
place in a disordered under stirred medium. Since diffusion is the
principal transport mechanism, fractional derivatives can be used to
describe this anomalous kinetics under the heterogeneous in vivo
conditions.

In other fields, the applications of fractional calculus are
developed as extensions of well established mathematical models
that are based upon ordinary differential equations. Therefore, in
those cases it is important to understand how to properly
fractionalize these classic models (Dokoumetzidis et al., 2010a,
2010b).

Motivated by the use of fractional calculus in pharmacokinetics,
in this work we intend to extend the modeling capabilities of
fractional calculus to the areas of chemical and biochemical
engineering. In our opinion, it is reasonable to think that the
physicochemical nature of biological processes (fermentations,
enzymatic reactions, cell growth, etc.) will result in a dynamic
behavior with memory. Therefore, we focus on biological reactive
systems as the main illustrative cases of our approach. It is
interesting that, in spite of the extensive existing literature on
fractional calculus applications, literature related to reaction
kinetics of chemical and biochemical processes is limited.

1.1. The fractional derivative

Fractional derivatives can be introduced trough successive
differentiation of integer powers of x (notice that the expression
introduces the differentiation operator D)

D0xp ¼ xp; Dxp ¼ pxp�1 ; D2xp ¼ pðp�1Þxp�2;

Dmxp ¼ pðp�1Þðp�2Þ…ðp�mþ1Þxp�m ð1Þ

Multiplying and dividing Eq. (1) by ðp�mÞ!

Dmxp ¼ pðp�1Þðp�2Þ…ðp�mþ1Þðp�mÞ! xp�m

ðp�mÞ!

Dmxp ¼ p!
ðp�mÞ!x

p�m ð2Þ

where m is a positive integer number. To derive an expression for
fractional differentiation (m is generalized to fractional values), the
factorial function is substituted by the Gamma function

ΓðzÞ ¼
Z 1

0
e�uuz�1 du

Since it can be proved that Γðzþ1Þ ¼ z! for all zAℝ. Then, Eq. (2)
can be re-written as follows:

Dαxp ¼ Γðpþ1Þ
Γðp�αþ1Þ x

p�α ð3Þ

where αAℝ: αZ0:
Eq. (3) is one of the definitions of the Riemann–Liouville

fractional derivative (Oldham and Spanier, 1974; Miller and Ross
1993). A more elegant and general methodology (Magin, 2006)
uses Laplace transformation and the definition of the Cauchy
integral to obtain expressions for the Riemann–Liouville fractional
integration

0D
�α
t f ðtÞ ¼ 1

ΓðαÞ
Z t

0

f ðτÞ
ðt�τÞ1�α

dτ 0oαo1 ð4Þ

and two alternative definitions of fractional derivative, the
Riemann–Liouville definition

f ðtÞ ¼ 0D
α
t YðtÞ ¼

d
dt
½0D�ð1�αÞ

t YðtÞ�

and the Caputo definition

f ðtÞ ¼ 0D
α
t YðtÞ ¼ 0D

�ð1�αÞ
t ½Y 0ðtÞ�þYð0Þt�α

Γð1�αÞ
The fractional derivative definitions differ in the initial condi-

tion considered in each case. The order of the derivative can be
extended to values of α41. Then, for �1oαom, where m is the
smallest positive integer larger than α, the definitions are as
follow:
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and

C
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α
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Y ðmÞðτÞ
ðt�τÞαþ1�mdτ ð6Þ

Eq. (5) is the Riemann–Liouville fractional derivative definition
and Eq. (6) is the Caputo definition, which is generally expresses as
C
0D

α
t f ðxÞ. Eqs. (5) and (6) are extensively used in most of the

theoretical and practical applications of fractional calculus.

2. Anomalous kinetics and reactive biological systems

Typical simulation and optimization models for reactive biolo-
gical systems, which exhibit anomalous kinetics that do not
necessary follow the classical mass-action form, include equations
involving empirical or semi-empirical expressions. Anticipating a
potential memory effect on the dynamics of such systems, one of
our goals is to show that, as an alternative, the kinetics of those
reactive systems, such as fermentation, enzymatic reaction and
biomass growth processes, can also be accurately represented
by using fractional calculus without the need for empirical
considerations.

To illustrate the approach, here we consider three instances of a
fermentation process; two of them produce bioethanol with
different substrate and microorganisms and the third one is for
the production of Tequila. In addition, we also analyze the case of
the thermal hydrolysis of Agave salmiana to produce Mezcal under
two different temperature conditions.

2.1. Fermentation processes

In general, the models reported in the literature for fermenta-
tion are based on empirically driven kinetics. However, many
times these models are not the best fit for the experimental data.
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