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H I G H L I G H T S

� Fractional optimal control problems are formulated for biological reactive systems.
� Combines numerical/analytical strategies are proposed for solving FOCP.
� One approach combines optimality conditions for a FOCP and the gradient method.
� Second approach combines an NLP solver, shooting method and Laplace transformation.
� Resulting profiles show the effect of the fractional orders in the optimal results.
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a b s t r a c t

This second paper of our series is concerned with the formulation and solution strategies of fractional optimal
control problems (FOCP). Given the sets of fractional differential equations representing the behavior of
fermentation and thermal hydrolysis reactive systems, here we formulate the corresponding FOCP’s and
describe suitable techniques for solving them. An analytical/numerical strategy that combines the optimality
conditions and the gradient method for FOCP as well as the predictor–corrector fractional integrator is used to
obtain optimal dilution rate profiles for the fermentation case-study. For the case of the thermal hydrolysis, the
strategy involves discretization of the FOCP to formulate it as a Non-Linear Programming problem; then, the
solution algorithm involves the use of an NLP solver and the shooting technique coupled to an inverse Laplace
transformation subroutine. The optimal profiles show the performance of the numerical solution approaches
proposed and the effect of the fractional orders in the optimal results.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control problems (OCP) have been extensively studied
in the literature. Several references and classical books provide the
theoretical basis and fundamentals of this area (see for instance
the books by Stengel, 1994; Sethi and Thompson, 2000; Diwekar,
2008 and the work by Poznyak, 2002).

In summary, an OCP is defined by the system of Eqs. (1)–(4):

Optimize
u J ¼ϕðxðtf Þ; tf Þþ

Z tf

t0
LðxðtÞ;uðtÞ; tÞdt ð1Þ

Subject to:

dðtÞx
dt

¼ f ðxðtÞ;u; tÞ xð0Þ ¼ x0 ð2Þ

h x;u; tð Þ ¼ 0 ð3Þ

gðx;u; tÞr0 ð4Þ
Solution techniques for an OCP involve the use of calculus of

variation, dynamic programming and the maximum principle of
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Pontryagin. The use of the calculus of variations provides the
optimality conditions for an OCP (also known as Euler–Lagrange
equations). The optimality conditions involve a two-point bound-
ary value problemwhose solution provides the optimal profiles for
the state and control variables.

1.1. A fractional optimal control problem (FOCP)

If the system dynamics of an OCP (Eq. (2)) is represented
instead in terms of a set of differential equations of fractional
order α,
C
0D

α
t yðxÞ ¼ f ðxðtÞ;uðtÞ; tÞ ð5Þ

the resulting optimization problem is then a fractional optimal
control problem (FOCP). Eq. (5) represents the fractional dynamics
of a system in terms of the Caputo definition.

Interesting and promising applications of fractional calculus
have been proposed in the area of process control (Moreau et al.,
2002; Podlubny, 1999, 2002; Delavari et al., 2013), mostly related
to the design and tuning of controllers. However, in the area of
dynamic optimization or optimal control, the fractional calculus
literature is limited. Still, recent advances propose numerical
solution approaches to the solution of FOCP’s. Agrawal (2002,
2004) uses calculus of variations and the formula for fractional
integration by parts to derive the optimality conditions of an
FOCP; the author provides the Euler–Lagrange equations for FOCP
based on the Riemann–Liouville definition of a fractional deriva-
tive and developed an approximate numerical solution based on
the transformation of the problem into a set of algebraic equations
(by using Legendre polynomials). In later works, Agrawal (2008),
Agrawal et al. (2010) also derived the optimality conditions when
the Caputo definition for the fractional derivatives is used and
proposed numerical solution techniques based on the Grünwald–
Letnikov approximation. Numerical schemes for the solution of
FOCP are also proposed in Tangpong and Agrawal (2009) and in
Tricaud and Chen (2010). Tricaud and Chen (2010) solved classical
FOCP’s by using the Oustaloup recursive approximation to
reformulate an FOCP as an OCP. These authors then used the
RIOTS95 (Schwartz et al., 1997) solution algorithm for solving the
resulting OCP.

1.1.1. Optimality conditions (Euler–Lagrange equations) for an FOCP
(Agrawal, 2004)

The derivation of the optimality conditions for an FOCP is
described in detail on the work of Agrawal (2004). The author used
a simplified formulation of an FOCP as follows:

Minimize
u JðuÞ ¼

Z 1

0
Fðx;u; tÞ dt ð6Þ

subject to:

aD
α
t x¼ Gðx;u; tÞ xð0Þ ¼ x0 ð7Þ

where the fractional derivative in Eq. (7) corresponds to the left
hand side Riemann–Liouville definition. The goal is finding an
optimal control profile uðtÞ to minimize the integral Eq. (6); F and
G are arbitrary continuous functions. Also notice that the integra-
tion limits have been set to 0 and 1 and it is further assumed that
0oαo1; these considerations do not affect the generalization of
the derivation procedure. The derivation includes a calculus of
variations approach and the formula for fractional integration by
parts developed by Riewe (1996) and Samko et al. (1993). Agrawal
(2004) demonstrates that the minimization of the Lagrangean
objective function requires:

0D
α
t x¼ Gðx;u; tÞ xð0Þ ¼ x0 ð8Þ

tD
α
1 λ¼

∂F
∂x

þλ
∂G
∂x

λð1Þ ¼ 0 ð9Þ

and

∂F
∂u

þλ
∂G
∂u

¼ 0 ð10Þ

The fractional boundary value system of fractional Eqs. (8)–(10)
are the Euler–Lagrange optimality conditions for FOCP’s based on
the left hand side Riemann–Liouville definitions for fractional
derivatives. Following a similar procedure, Agrawal (2008) derived
the Euler–Lagrange optimality conditions for FOCP’s based on the
Caputo definition for the fractional derivatives. The result of the
derivations is given by Eqs. (11)–(13):

C
0D

α
t x¼ Gðx;u; tÞ xð0Þ ¼ x0 ð11Þ

C
t D

α
1 λ¼

∂F
∂x

þλ
∂G
∂x

λð1Þ ¼ 0 ð12Þ

∂F
∂u

þλ
∂G
∂u

¼ 0 ð13Þ

If the order of the fractional derivatives, α, becomes 1, the
system of Eqs. (11)–(13) reduces to the classical optimality condi-
tion equations for an OCP.

In the following sections, the fractional models developed for the
biological reactive systems described in Toledo-Hernandez et al. (2014)
will be reformulated as FOCP’s. Then analytical/numerical solution
strategies will then be proposed to solve those problems. Finally,
results are presented and a final discussion is provided.

2. Case studies: Formulation of illustrative FOCP’s

This section presents three illustrative examples of FOCP’s. The
first example is the fractional version of the classical time invariant
problem (Agrawal, 2004); this case is used to test the numerical
strategy that we have implemented to solve the fractional bound-
ary value problem (optimality conditions) based on Caputo defini-
tions for the fractional derivatives. The second and third examples
correspond to the fermentation and thermal hydrolysis reactive
systems described in Toledo-Hernandez et al. (2014); a perfor-
mance index was incorporated to those fractional dynamic for-
mulations, resulting in two FOCP’s.

2.1. Fractional time invariant problem

The fractional version of the classical time invariant problem
was proposed by Tricaud and Chen (2010) and Agrawal (2004);
in those references, such formulation was approached by con-
sidering the Riemann–Liouville definition of fractional derivative.
In this paper, however, we will consider the alternative approach
based on the Caputo fractional derivative definition presented by
Agrawal (2008).

The time invariant problem consists of finding the optimal
control, uðtÞ, that minimizes the function:

JðuÞ ¼ 1
2

Z 1

0
½x2ðtÞþu2ðtÞ�dt ð14Þ

subject to:

C
0D

α
t x¼ �xþu xð0Þ ¼ 1 ð15Þ
The Hamiltonian functions for this problem is given by:

ℋ¼ 1=2ðx2þu2Þþλð�xþuÞ
By obtaining the optimality conditions defined by Eqs. (11)–(13),

the Euler–Lagrange equations for the fractional time invariant
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